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An investment problem (4 min)

If you have some cash, and you’d like to purchase some stocks,
hold for a year, then sell them. How do you maximize gain? That
is, minimize loss?

Let there be N stocks to pick from, and your strategy is to invest a
portion xi of the cash into stock i. Then your strategies are defined
by a vector x = (x1, ...xN)
Let the loss from the investment be L = L(x). Since investment
outcome is uncertain, L(x) is a random variable. We would like to
find some x that ”minimizes” L(x).
L(x) is random, so it can’t be minimized directly. The usual
solution is to minimize its expectation:

x∗ = arg min
x

E(L(x))
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Expectation can be dangerous (7 min)

Minimizing expectation could be, however, dangerous when there
is a small chance of catastrophe.

Consider an example from finance.
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Expectation can be dangerous (7 min)

Collapse of Long-Term Capital Management cost $4 billion.
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Controlling the tail (13 min)

To deal with the dangerous long tail, we can control its tail directly.

Consider a normally distributed random variable X ∼ N (µ, σ2).
N denotes a normal distribution with mean µ and variance σ2.

Then, instead of the expectation, we consider the tail expectation:

E(X |X > qα(X ))

where qα(X ) is the α-quantile of X .
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CVaR: Conditional value at risk (18 min)

Definition of CVaR

For any random variable X , and 0 ≤ α < 1,

CVaRα(X ) = E(X |X > qα(X ))

The α = 1 case is special: CVaR1(X ) = sup(X )

Example

Let X be uniform over [0, 1], then,

qα(X ) = α,CVaRα(X ) =
1

2
(1 + α)
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Discrete approximation (23 min)

Given random variable X , we can construct an approximation of X
by sampling the first n terms of its IID process X1,X2, ...Xn. Then
let Ln be a random variable that is equal to Xi with probability 1/n.

If n is big, and X is ”nice”, then Ln should be ”similar” to X . For
example, we should have

E(Ln) =
1

n

n∑
i=1

Xi ≈ E(X )

Side remark: This is essentially ”bootstrapping” from statistics.
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Central limit theorem (33 min)

Intuitively, the central limit theorem states that for any X with
variance σ2, we have

E(Ln) =
1

n

n∑
i=1

Xi ≈ E(X ) +
1√
n
N (0, σ2) + o

(
n−1/2

)
That is,

√
n(E(Ln)− E(X )) converges to N (0, σ2) in distribution.

This suggests the generalization

Central limit theorem for CVaR

For any X with finite variance, there exists some function
σ : [0, 1)→ [0,∞), such that

CVaRα(Ln) ≈ CVaRα(X ) +
1√
n
N (0, σ(α)2) + o

(
n−1/2

)
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Central limit theorem (33 min)

Central limit theorem for CVaR

Since Ln is a mixture of X1, ...Xn, we have

CVaRα(Ln) ≈ 1

(1− α)n

(1−α)n∑
i=1

X(i)

where X(i) is the i-th greatest among all X1, ...Xn.

We proved that σ(α)2 equals

V
(

1

1− α
(X − qα(X ))+

)
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Numerical experiments (38 min)

For X uniform over {0, 1, 2}, we generated trials of CVaRα(L1000),
and graphed theoretical vs actual σ(α)2:

What happens at the ”jumps”, like α = 1/3?
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Numerical experiments (38 min)

For X uniform over {0, 1, 2}, we generated trials of CVaRα(L1000),

The distribution of CVaR1/3(Ln) becomes ”mixed Gaussian”!
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Proof of central limit theorem (43 min)

The proof of the theorem proceeded in 4 steps:

1 Use the Gärtner–Ellis theorem to calculate the result as an
integral equation.

2 Solve the equation when X is a mixture of uniform
distributions over intervals on the real line.

3 Take the limit so that X has discrete distribution.

4 A general X distribution is takes as the limit of a sequence of
discrete distributions.
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Strong law of large numbers (48 min)

Finally, we have the remarkable generalization

Uniform strong law of large numbers for general risk measures

Let X be a random variable with bounded range.
With probability 1, for any m probability distribution over [0, 1],
the risk measure defined by

F(X ) =

∫ 1

0
CVaRα(X )dm(α)

gives
lim
n
F(Ln) = F(X )

Prove the base case with Gärtner-Ellis, then ”bootstrap” from it.
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Conclusion (50 min)

1 Expectation is not necessarily the best for describing the
relevant behaviors of a random variable.

2 Minimizing the CVaR of risk, instead of the expectation,
allows more prudent planning.

3 There are remarkable generalizations to basic theorems of
probability theory, once expectation is replaced with CVaR.
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