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Abstract

Expectation lies at the foundation of probability, but its centrality belies its

contingency. Abstractly, the expectation of a random variable is a real number

that measures some information about the variable, and one may well explore the

consequences of replacing expectation by some alternative.

Certain alternatives to expectation, termed “coherent risk measures”, have

been well-investigated in financial engineering, but they are relatively unknown

in the field of machine learning. Here, we collect and prove some fundamen-

tal properties of coherent risk measures that we believe would be applicable to

machine learning.

In Chapter 1, we give a guide to the thesis, then we review the concept of risk

measures, point out possible deficiencies of the expectation as a risk measure, and

provide a historical overview of the study of risk measures in finance and other

areas.

In Chapter 2, we review basic probability concepts, then define the concept of

coherent risk measures and study the geometric properties of their envelope rep-

resentations. Armed with geometric insight, we prove a Kusuoka representation

theorem when the underlying sample space is finite and uniform, and construct

counterexamples when it is finite but nonuniform.

In Chapter 3, we generalize some basic probability inequalities and concentra-

tion inequalities from expectation to conditional value at risk. Then we review

statistical learning theory and generalize its basic concepts and its fundamental

theorem by replacing expectation with spectral risk measures.

In Chapter 4, we review limit theorems in probability, give a new and intuitive

proof of the central limit theorem for the empirical estimator of CVaR. We also

prove the uniform strong law of large numbers for the empirical estimator of

spectral risk measures. We provide numerical evidence to support our results

and generate conjectures.

In Chapter 5, we summarize the main theorems and conjectures of the thesis,
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review the literature on applications of general risk measures to machine learning,

and point to possible future research directions.
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Notation, convention, and

terminology

Notation and convention

Conventions are choices that are purely for convenience and disambiguation,

with no deep significance.

N The set of natural numbers is {1, 2, ...}.

n A positive integer, unless otherwise noted.

[n] {1, 2, ..., n}, with caveat that n ≥ 1

c A real constant, unless otherwise noted.

x+ Positive part of x, that is, max(x, 0).

∂A Topological boundary of A.

cl(A) The topological closure of A.

co(A) The convex hull of A, where A is a subset of some real vector

space.

(S,B, ν) Probability space as formalized in Kolmogorov probability the-

ory. See Definition 2.1. When S is countable, B is its power

set. When S has a topology, B is its Borel σ-algebra.

µ, ν, ... Probability measures are written in Greek minuscule.

Pr(F ) Probability of event F .

X, Y, ... Random variables are written in Latin majuscule. All random

variables are real-valued unless otherwise stated.
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xiv NOTATION, CONVENTION, AND TERMINOLOGY

Eν(X) Expectation of random variable X. The subscript ν means

that X is based on a probability space (S,B, ν), and is often

omitted.

N (µ, σ2) Normal distribution with mean µ and variance σ2. See defini-

tion 4.2.

δx The Dirac delta distribution at x ∈ R. For any Borel subset

A of R, δx(A) = 1x∈A.∑n
i=1 piδxi A discrete probability distribution, with pi ≥ 0,

∑n
i=1 pi = 1.

µX Given random variable X, µX is the probability measure on R,

such that for any Borel subset A of R, µX(A) = Pr(X ∈ A).

X ∼ µ X has the probability measure µ. That is, µX = µ.

X
d
=Y X, Y have the same distribution. That is, µX = µY .

X ≡ Y X = Y almost surely.

Xn
d→Y Xn converges to Y in distribution.

Xn
Pr→Y Xn converges to Y in probability.

Xn
a.s.→ Y Xn converges to Y almost surely.

1 A random variable that has constant value 1. When no con-

fusion could arise, c1 may be written as c.

α A real number in [0, 1], unless otherwise noted.

α = 1− α This simplifies some equations.

ρ A probability density function.

L (S) The set of all random variables on S. If no confusion would

arise, S is omitted.

L p The set of all random variables with finite p-moment.

L+ The set of all random variables that are almost surely nonneg-

ative.

F ,R,V ... Letters in calligraphic font are risk measures on L 2.
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F ,R,V ... Letters in the script font are subsets of L 2. See Notation 2.21

and Equation 2.23.

〈X, Y 〉 The inner product on L 2, defined as E(XY ).

(Fn) Empirical cumulative distribution function. See Definition

2.14.

(Ln) Empirical process. See Definition 2.14.

Terminology

risk measure A function of type A → B, where A ⊆ L , B ⊆
[−∞,+∞].

coherent A possible property of a risk measure. Other possible

properties include sublinear, subadditive, risk averse,

etc. See Definition 2.22.

CRM Coherent risk measure.

IID Indepedent and identically distributed.

PDF Probability density function.

CDF Cumulative distribution function.

CLT Central limit theorem.

SLLN Strong law of large numbers.

WLLN Weak law of large numbers.

VaRα Value at risk at level α. See Example 2.12

CVaRα Conditional value at risk at level α. See Definition

2.25.

EVaRα Entropic value at risk at level α. See Definition 4.25

SLT Statistical learning theory.

ERM Empirical risk minimization. See Definition 3.19.
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PAC-learning Probably approximately correct learning. See Defini-

tion 3.18.

VCdim Vapnik–Chervonenkis dimension. See Definition 3.25.



Chapter 1

Introduction

1.1 How to read the thesis

The abstract provides an overview of the whole thesis.

Start with Chapter 1, which should be accessible for general readers with basic

college mathematics.

Proceed to the first half of Chapter 2, up to Section 2.2, which gives a com-

pressed introduction to probability and risk measures, necessary for understand-

ing the rest of the paper.

The reader should then move to Chapter 5 for a summary of the main results

in the paper, then study whichever appears the most interesting. This is assisted

by the fact that there is little interdependence in the rest of the paper.

Most of the proofs in the paper may be skipped, as they are either trivial (such

as that of Proposition 3.4) or highly technical (such as that of 3.12), and thus

unlikely to be of general mathematical interest. However, we believe that our new

proof of the central limit theorem of CVaR (Section 4.2.1), while technical and

computational, is interesting, and recommend that any reader who has expertise

in large deviation theory may profitably study it in detail.

1.2 Start with a problem

In online commerce, fraudulent accounts pose a constant threat. As such, soft-

wares are written that can automatically detect suspicious accounts and suspend

them. Such a software works by taking an account’s activity log, and computing

a judgment based on it: “fraudulent” or “honest”.

This is a concrete example of the problem of classification. Similar problems

1



2 CHAPTER 1. INTRODUCTION

include detecting suspicious activities in social media accounts, classifying images

into categories, and handwriting recognition.

The common way in which classification problems are formalized is by defining

a feature space X and a label space Y , and a probability distribution µ on the

space X × Y . For example, in the case of handwritten digit recognition, the

feature space could be the space of all grayscale images with resolution 256×256,

and the sample space could be the set of all numerals: {0, 1, ..., 9}. For any

feature-label pair (I, n) ∈ X × Y , µ({(I, n)}) is the probability of encountering

such a feature-label pair, and µ({(I, 1)|I ∈ X}) is the probability of encountering

any handwritten digit 1.

1.2.1 What is the right thing to do?

A classification problem is a special case of a rational decision problem, and most

of the current theory on rational decision is formalized after the 1940s. The most

influential model of rational decision is that of expected utility maximization,

propounded by von Neumann, Morgenstein, Savage, and many others.

Simply put, expected utility maximization states that a rational person would

have a “utility function” that assigns a utility, that is, a real number symbolizing

how much they prefer a certain outcome, to every possible outcome of their

decision. They would take the decision that maximizes the expectation of

utility.

Convention 1.1. Throughout this thesis, we will only talk about loss instead of

utility. This is just a sign convention, as loss is the negative of utility. Expected

utility maximization becomes expected loss minimization.

According to this theory, to solve the question of classification, a rational agent

would start by deciding on a loss function, then find the classification algorithm

that minimizes the expectation of loss.

Concretely, the loss function can be defined as ` : Y × Y → R, such that

`(y, y′) measures how bad it is to classify an object as y when it is actually y′.

A classification algorithm is some f : X → Y .

Let M be the set of all classification algorithms that the agent can think of,

then the best classification algorithm is

f = arg min
f∈M

E(X,Y )∼µ(`(f(X), Y )) (1.1)

This is usually how the solution is given, but this is not necessarily the best

solution. The issue lies within the use of expectations.
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1.2.2 Is expectation the right thing to calculate?

There are two kinds of decision theories: descriptive and normative. Descrip-

tive theories predict how people actually decide, while normative theories tell

how people should decide. Expected utility maximization used to be both a de-

scriptive and normative theory. Psychologists and economists considered it an

accurate description of how humans decide when they are thinking clearly, and

philosophers considered it the correct standard for rationality.

This has come under attack on both fronts.

On the descriptive front, the work of Kahneman and Tversky since 1970s

[TK74] has made it clear that humans do not minimize expectations of loss.

They perceive probabilities in a distorted way. They regard losing 1 dollar as a

lot worse than gaining 1 dollar.

On the normative front, directly against Kahneman, who recommends that

people attempt to avoid making such irrational deviations in decision-making,

Gigerenzer since 1990s [GB09] has proposed that these deviations from expected

loss minimization are shortcuts in reasoning that are vital for real humans, who

do not have unlimited time and thinking ability.

Regardless of one’s normative stance, the requirements for an accurate de-

scription of how people make decisions means we would do well to not restrict

ourselves to expected loss minimization formalism.

1.2.3 The deadly long tail

The climate system is an angry beast and we are

poking it with sticks.

Wallace Broecker

Another criticism to the normative theory of expected loss minimization is

that expectation is a very impoverished standard with which to measure the

desirability of possible outcomes. In particular, it does not adequately account

for extremely bad outcomes, in certain situations where the expectation of loss is

not as relevant as the possibility of a very large loss.

Consider the problem of designing a drug, with the loss function being the

total number of lives lost after administering the drug, then the expectation can

be lowered by making the drug marginally better in most situations, but greatly

worse in a few situations.
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Such loss is said to have a “long tail”, that is, it has a small but non-negligible

chance of causing great harm.

Returning briefly to human psychology, the anthropologist Jared Diamond

argues that [Dia13, Chapter 7] humans in traditional (“primitive”) societies ex-

ercise “constructive paranoia” towards the long tail. An activity (sleeping under

a dead tree) that has a tiny chance of great danger (the tree falling down) is

avoided whenever possible. That even if it would happen on average once every

1000 years, they would not do it. In effect, their decisions are less about expected

risk minimization, but more about extreme tail risk minimization.

In fact, the flurry of activities on studies of rational behavior and game theory

after 1940s was motivated in no small part by the specter of thermonuclear war

and human extinction, the greatest of all extreme tail risks.

While the cold war has ended in 1990s, the tail risk of nuclear war has not

been eliminated. One survey [15] among nuclear policy experts found that the

national security experts give on average a 7% chance of nuclear war killing more

people than World War Two in the next 25 years, which roughly corroborates

with the result from another survey [BS08].

The other extreme risk faced by modern humans is climate change. Without

swift action to limit atmospheric concentration of greenhouse gas, the global

average temperature is expected to rise by more than two degrees Celsius by

2100. While this expected value is tolerable, the temperature rise has a deadly

long tail, up to more than six degrees. [Wei09] in particular proposes that, since

the loss is so great at the tail end of climate change, and the tail end is so

uncertain, merely minimizing expectation of loss is unwise.

Or in simpler words: it matters a great deal if there is a small, uncertain

chance of warming by 10 degrees Celsius, even if we don’t know if it is 1% or

0.01%, because it would be the end of human civilization.

In such cases, especially cases where the long tail is uncertain, mere expec-

tation appear to be deficient in giving a full picture of the risk, and thus risk

measures that are sensitive to more details of the shape of the risk would be

useful.

1.2.4 Further reading

For more history on expected utility theory, see [Fis89]. For a philosophical

analysis of normative expected utility theory, see [Bri19].

For an overview of Kahneman and Tversky’s research into descriptive de-
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cision theory, [Kah11] is a very readable book, in which Kahneman repeatedly

advises the reader to control their hardwired irrationality and follow the expected

loss minimization principle. On the other side of the spectrum is Gigerenzer’s

popular book [Gig07], which praises gut feeling as more practical than rational

calculations.

The intuition that a risk manager should pay more attention to avoiding

catastrophic outcomes has been formalized, from a legal point of view, as the

(catastrophic) precautionary principle [Sun07].

1.3 Traditions of risk measurement

1.3.1 Financial mathematics

Financial mathematicians, while unconcerned with classification problems in ma-

chine learning, have been heavy users of risk measures. Crudely, investment could

be thought of as a binary classification problem: given a portfolio constructed

from financial products (stocks, bonds, foreign currencies, etc), one must judge

whether this portfolio is an “acceptable” or “unacceptable” investment.

Portfolio optimization

In more detail, the problem of portfolio optimization is to construct the “best”

portfolio, subject to certain constraints, and financial mathematicians tradition-

ally formalize this problem thus [AF19, section 3]: Consider an investor who

wishes to optimize their net worth in one year, and has n financial products with

which to construct their portfolio. A portfolio is then formalized as a real vector

X = (x1, ..., xn) ∈ Rn, with xi denoting that the portfolio contains xi units of

product i.

There are many possible constraints to consider. For example, suppose the

investor cannot hold negative amount of products (“shorting” in financial jargon),

then xi ≥ 0 for all i. Suppose the investor currently can invest no more than P ,

then
∑

i xipi ≤ P , where pi is the price of a unit of product i. In general, such

constraints are represented as a set D ⊆ Rn of possible portfolios.

After the year is up (“the portfolio has reached maturity”), the movements

of the market during the year would determine the outcome of the portfolio.

Formally, let Y = (y1, ...ym) be a real vector of all the relevant facts about the

market, then the outcome of the portfolio is a function of X and Y . Let it be
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L(X, Y ). In order to cast this in the language of loss minimization, L represents

loss, so if the portfolio earned money at the end of the year, it gives a negative

L.

Since Y is uncertain, it is modeled as a random variable. Thus, for each pick of

portfolio X, L(X, Y ) is a random variable representing the outcome at maturity.

Then, the problem of portfolio optimization is to find

arg min
X∈D

F(L(X, Y )) (1.2)

where F is a risk measure that the investor chose to represent how they feel about

possible losses. A very risk-neutral investor could choose F = E, while a very

risk-averse investor could choose F = max.

Modern portfolio theory

Modern portfolio theory, or mean-variance analysis, was initiated by [Mar52], and

postulates that the investor is interested in only two numbers: the expectation

and variance of investment returns. An investor, in this theory, always chooses

the portfolio with the least variance out of all portfolios that have the same

expectation.

In the language of risk measures, let the investment return be denoted by the

random variable L. To cast it in the language of loss minimization, let L be the

amount of money lost in the investment. The goal is then to minimize variance

of L, under the constraint that the expectation of L is lower than some fixed

constant, representing the investor’s tolerable expectation of loss.

Then, we can represent this as minimization of F(L), where F(L) = E(L) +

λσ(L), where E is the expectation, σ is the standard deviation, and λ is a constant

that represents how variance-averse the investor is. Here, σ instead of σ2 is used,

since the unit of risk measure should be in dollars, while the unit of σ2 is (dollar)2.

A big λ represents a strong desire to keep the standard deviation down, while

λ close to zero represents an investor that is indifferent to variance, and behaves

similar to a classical rational agent who only aims to maximize expectation. A

negative λ represents an investor who prefers variance, the opposite of what mod-

ern portfolio theory assumes, but in no way invalid. Indeed, some investors rec-

ommend limited risk-seeking investment as a wise way to benefit from unexpected

boons [Tal12].
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Criticisms

There are many criticisms of modern portfolio theory, which is not surprising

considering it is over 60 years old now.

One main criticism is that variance and expectation do not characterize a

distribution sufficiently. For example, consider a Gaussian distribution and a

distribution with density F(x) ≈ 1
x4

for large x. They may have the same ex-

pectation and variance, but one decays far faster than the other. Put it more

explicitly, if human height were distributed like F(x) ≈ 1
x4

, then the tallest man

in the world would very likely be several meters high at least. This does not

happen, as human height, conditional on sex, is almost Gaussian distributed.

Value-at-risk (VaR)

Other than the mean-and-variance risk measure used by modern portfolio theory,

the quantile, or value-at-risk (VaR), is another risk measure that is popular in

finance. For any real random variable X, any 0 ≤ α ≤ 1, the α-VaR of X is the

α-quantile∗ of X.

Banks do not just keep their customers’ money in a vault. They might loan

money for interest, or trade stocks for profit. However, each investment exposes

banks to risks, and to protect themselves from failing, banks are required to keep

a certain amount of money in its vaults so that they are considered sufficiently

prudent. The intuition of “sufficiently prudent”, again, relies on a risk measure.

Given all the investments of a bank, its negative net worth in a year can be

considered as a random variable X, and for X to be seen as sufficiently prudent,

some kind of judge must examine it, and give a verdict of “prudent” or “impru-

dent”. Just as before, this can be formalized as a risk measure F , such that

F(X) > 0 denotes imprudence, and F(X) ≤ 0 denotes prudence.

Many international banks follow the Basel Accords, a sequence of recommen-

dations on bank regulations. In particular, they describe risk measures for banks

to evaluate their prudence. In Basel II, published in 2004, the risk measure was

VaR, which cemented its position in financial risk management up until the crisis

of 2008.

There are widespread criticisms of VaR [Dan+01], among which, the most

basic one is its insensitivity to extreme losses. For example, suppose a financial

∗Annoyingly, there exists a subtly different convention, where the α-VaR of X is the negative

of 1 − α-quantile of −X. This convention is used by, for example, [Art+99]. The distinction

has no bearing on the mathematical content.
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product has a 95%-VaR of $10000, meaning that out of all the possible outcomes,

among the worst 5%, the best outcome is losing $10000. It might very well be

that in the worst 1% cases, the product would lose a billion dollars, an extreme

risk that is completely invisible in the 95%-VaR.

A more subtle argument against VaR is its non-convexity. That means that

two low-risk products, when combined, can appear high-risk, which is a direct

contradiction to the dogma that diversification reduces risk.

Coherent risk measures

In response to the criticisms, [Art+99] proposed axioms that any reasonable risk

measure should satisfy, and they called such measures coherent risk measures,

which is the main topic of this thesis.

The most commonly used coherent risk measure is the conditional value-at-

risk (CVaR)†, defined as the expectation of loss, conditional on the loss being

worse than a certain level. So, for example, if a product has 95%-CVaR of $10000,

then among the worst 5% outcomes, the average is a loss of $10000. In particular,

this means that the probability of losing a huge sum of money must be small.

The probability of losing over a million dollars, for example, must be less than

0.05%.

After the financial crisis of 2008, there was great suspicion that the use of

VaR encouraged risky investments that contributed to the financial crisis, even

resulting in a congressional hearing [09]. In reaction to this, VaR was changed to

CVaR in Basel III, published in 2010.

For further reading, [Che14] is a detailed report on the history of VaR and

CVaR in the Basel Accords.

1.3.2 Other traditions

Closely related to the financial tradition is the actuary tradition, where the study

of tail risk is often called ruin theory. Ruin, in this context, denotes bankrupcy,

often caused by rare but great losses. An insurance company can be ruined if

a great earthquake struck all houses in a province. A bank can be ruined by a

financial panic.

Further afield is the tradition of reliability engineering. In building a

reliable house, the random variable X could stand for whether the house would

†Other names include “expected shortfall” (ES), “average value at risk” (AVaR), “condi-

tional tail expectation” (CTE), “tail-VaR”, and “mean excess”.
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fall down in the next earthquake. X = 0 for no and X = 1 for yes. Certainly, it is

important to keep X as close to 0 as possible, but since reliability is not free, and

there are competing priorities, such as budget limit, the architect cannot make

X infinitely close to 0.

What can be done is then to define a risk measure F , such that F(X) measures

the risk measure from X, and the architect would tweak the design so as to

minimize

F(X) + (risk measure from other risk factors).
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Chapter 2

The geometry of coherent risk

measures

In this chapter, we first carefully set up the probability notation for the rest of

the thesis. The impatient reader can skip over the section and refer to it only

upon encountering difficulties in comprehension.

Then, we describe a geometric way to represent risk measures on random vari-

ables. This geometric viewpoint is then used to prove the Kusuoka representation

for finite dimensional probability spaces with uniform probability distributions.

2.1 Basic probability definitions and notations

This section sets down and discusses basic probability definitions and notations.

2.1.1 Probability space

We set up the notations for Kolmogorov’s probability axiomatization. For a de-

tailed introduction to probability along this axiomatization, the reader is referred

to [Chu01].

Notation 2.1. (S,B, ν) is a probability space, with nonempty S as state

space, B a σ-algebra on S, and ν a probability measure on (S,B). The

events of S are the elements of B.

Convention 2.2. If S is countable, then unless otherwise noted, we assume

B = 2S, that is, all subsets of S are measurable, and ∀ω ∈ S, ν({ω}) > 0, that is,

all states have nonzero probability. This is an assumption of nondegeneracy.

11
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Definition 2.3. Any B ∈ B with ν(B) > 0 is non-atomic if and only if ∃C ∈ B,

such that C ⊆ B, ν(B) > ν(C) > 0. In other words, it has a subevent with

smaller, but still nonzero, probability. S is atomless if and only if all of its

subsets with nonzero probability are non-atomic.

Remark 2.4. In particular, if S is countable, then it is not atomless. In fact, it

is the opposite of atomless, as every B ∈ B with ν(B) > 0, any singleton subset

of B is atomic.

Convention 2.5. Random variables, unless otherwise noted, are real, that is,

they are real measurable functions on S. In order to precisely define real mea-

surability, we must specify a σ-algebra on R, which we choose to be the set of

Borel measurable sets of R. In general, whenever necessary to formalize Rn-

measurability, we choose the set of Borel measurable sets of Rn.

Convention 2.6. Unless otherwise noted, (Xn) denotes a sequence of indepen-

dent and identically-distributed real random variables, indexed by n, that has the

same distribution as X. The index n ranges over N.

Definition 2.7. (Xn) is the IID process of X. In general, any sequence of

random variables is a stochastic process.

Notation 2.8. The constant-one random variable is 1, such that ∀ω ∈ S,1(ω) =

1. We abuse notation slightly, so that if there is no confusion, any constant c can

also denote the corresponding constant random variable c · 1.

2.1.2 Probability distributions

In probability theory, the underlying probability space is often immaterial for the

problem that is being studied. As Terence Tao noted [Tao10], probability theory

can be said to be the study of measure spaces with measure one, but that is like

saying number theory is the study of finite strings.

In particular, consider a coin, and let X represent the number of heads that

come up if it is flipped once. Then, if the coin is fair, we have Pr(X = 0) =

Pr(X = 1) = 1
2
. This can be formalized by defining an underlying probability

space S = {1, 2}, with ν(1) = ν(2) = 1
2
, and X(i) = i − 1. However, all

this formality accomplishes little in the way of understanding the probabilistic

behavior of X.

The part of X that is of concern in probability theory is its distribution, that

is, the probability of events involving X. For this particular X, its distribution

is completely determined by Pr(X = 0) = Pr(X = 1) = 1
2
.
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In general, a real random variable is well-described by its probability measure:

Definition 2.9. Given a real random variable X, its associated probability

measure µX is defined by

µX(E) = Pr(X ∈ E) (2.1)

for any Borel measurable E ⊆ R.

It is a standard result in measure theory that µX is determined by the cumu-

lative distribution function FX :

Definition 2.10. Given a real random variable X, its cumulative distribution

function (CDF) is defined by

FX(x) = Pr(X ≤ x) = Pr(X ∈ (−∞, x]) = ν(X−1((−∞, x])) (2.2)

It is a standard result in probability that the set of all possible CDF is the set

of monotonically increasing, right-continuous real functions F : R → [0, 1], such

that limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.

Due to possible jump discontinuities, the inverse of FX is not uniquely defined.

The standard disambiguation is by demanding F−1
X to be left-continuous:

Definition 2.11. Given a real random variable X, its quantile function F−1
X :

[0, 1]→ [−∞,∞] is defined by

F−1
X (q) = inf{t : FX(t) ≥ q} (2.3)

Note that F−1
X (0) = −∞, and F−1

X (1) = ess sup(X), which could be +∞. For all

0 < α < 1 cases, F−1
X (α) is real-valued.

Example 2.12. For any 0 ≤ α ≤ 1, the value-at-risk at level α of a random

variable X is VaRα(X) = F−1
X (α).

Definition 2.13. Given X, let (Xn) be its IID process, then for any n ∈ N,

the n-th empirical cumulative distribution function of X is a random CDF

defined by

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi) (2.4)

where for any set C, 1C is its indicator function.
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Definition 2.14. The n-th empirical measure of X is the discrete measure

µX,n =
1

n

n∑
i=1

δXi (2.5)

where (Xn) is the IID process of X, and for any element x, δx is the Dirac delta

measure, defined by

∀E ⊆ B, δx(E) =

1 if x ∈ E,

0 else.

For each µX,n, let Ln be a discrete random variable that has probability mea-

sure equaling µX,n, then the sequence of (Ln) defines the empirical process of

X.

Remark 2.15. Since the empirical CDF FX,n, and the empirical measure µX,n,

of X, are based on the IID process of X, which is itself random, FX,n and µX,n

are thus random functions, while FX and µX are deterministic.

Convention 2.16. Some functionals F on real random variables X, such as the

expectation, are defined purely by the probability measure µX of X, which is

determined by FX . As such, we can unambiguously abuse notation:

F(X) = F(FX) = F(µX) (2.6)

As will be defined in Definition 2.22, this is equivalent to saying F is law invari-

ant.

As an example, for any real random variable X ∈ L 1, with CDF FX and

corresponding probability measure µX on R, we have three equivalent definitions

of expectation:

E(X) =

∫
S

X(ω)dν(ω)

= E(FX) =

∫
[0,1]

F−1
X (α)dα

= E(µX) =

∫
R
xdµX(x)

(2.7)

Example 2.17. The n-th empirical mean of X is

1

n

n∑
i=1

Xi = E(FX,n).
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To say X satisfies the Strong Law of Large Numbers (SLLN) is to say that

E(FX,n)
a.s.→E(FX) = E(X),

where
a.s.→ denotes almost-sure convergence.

This is the first example of the general phenomenon, where, if X is a “well-

behaved” random variable, FX,n converges in some sense to FX as n → ∞.

That is, the empirical distribution FX,n approximates certain aspects of the true

distribution FX with arbitrary precision, as n→∞.

In Chapter 4, we will prove several generalizations of the Central Limit The-

orem that exhibit this general phenomenon.

2.1.3 Hilbert space of real random variables

Notation 2.18. Given a probability space (S,B, ν), let L (S) be the space of all

real random variables over S. Let L p(S) be the space of all real random variables

with finite p-moment. When no confusion could arise, S is omitted.

The case of p = 2 is special, as L 2 is a Hilbert space of square-integrable real

functions of S.

Convention 2.19. Unless otherwise noted, real random variables have finite

variance. That is, we restrict our attention to elements of L 2(S)

Notation 2.20. The inner product on L 2 is 〈X, Y 〉 = E(XY ).

Notation 2.21. Certain special sets are:

• E=c = {X ∈ L 2 : E(X) = c}.

• L 2
+ = {X ∈ L 2 : X ≥ 0}. This is called the nonnegative quadrant of L 2.

• D = E=1∩L 2
+. This is the set of all random variables that are nonnegative,

and have expectation one. If S is finite, then it is a simplex, which is

often written with the letter ∆ (“Delta”, the Greek letter that looks like a

simplex).

• For any p ∈ [1,∞), Up = {X ∈ L 2 : E(|X|p) ≤ 1}. This is the unit ball in

p-norm. By Hölder’s inequality, for all p ≥ q ≥ 1, Up ⊆ Uq.

• U∞ = {X ∈ L 2(S) : −1 ≤ X ≤ 1 almost surely}. It can be thought of as

the limit that is,

U∞ = lim
p→∞

Up =
⋂
p≥1

Up

.
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2.1.4 Functionals on random variables

Definition 2.22. We define special properties of functional F on L 2. In the

following list, these conditions are added to the front: ∀c ∈ R, Z, Z ′ ∈ L 2.

(1) Subadditivity. F (Z + Z ′) ≤ F(Z) + F (Z ′).

(2) Positive homogeneity. F(λZ) = λF(Z), for all λ ≥ 0. Note that this

implies F(0) = 0

(3) Convexity. F ((1− λ)Z + λZ ′) ≤ (1−λ)F(Z) +λF (Z ′), for all 0 ≤ λ ≤ 1.

(4) Sublinearity. Subadditive and positive homogeneous. This implies convex-

ity.

(5) Monotonicity. F(Z) ≤ F (Z ′) whenever Z ≤ Z ′ ν-a.s..

That is, when ν({s ∈ S|Z(s) ≤ Z ′(s)}) = 1

(6) Translation invariance. F(Z + c) = F(Z) + c.

(7) Coherence. Sublinear, monotone, and translation invariant.

(8) Closedness. {Z ∈ L 2|F(Z) ≤ c} is closed. Note that the topology on L 2

is defined by its inner product.

(9) Risk aversity. F ≥ E.

(10) Strict risk aversity. F ≥ E, with equality reached only for almost surely

constant random variables.

(11) Law invariance. X
d
=Y implies F(X) = F(Y ).

Each of these properties can be interpreted as formalizing practical properties

of risk measures:

(1) Subadditivity: “merger does not create extra risk”. See [Art+99] for a

detailed discussion.

(2) Positive homogeneity: doubling the outcome in all cases doubles the risk.

This is sometimes called “scale invariance”.

(3) Convexity: iversification can only decrease risk, that is, holding stocks in a

certain proportion has less risk compared to holding them separately in the

same proportion.
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(4) Sublinearity: Positively homogeneous and convex.

(5) Monotonicity: if in all cases, the outcome is not better, then the risk is not

lower.

(6) Translation invariance: adding a sure loss of c increases risk by c.

(7) Coherence: to be interpreted in Section 2.2.

(8) Closedness: A technical assumption. A closed risk measure has convenient

analytical properties, such as being lower semicontinous, and satisfying a

Fatou’s lemma. See [Kus01, Theorem 2] for details.

(9) Risk aversity: As noted in Section 1.3.2, in classical decision theory, a

rational agent maximizes its expectation of utility, and is unconcerned with

variances, no matter how extreme. Humans, in contrast, are often “risk

averse”, that is, they often give up a higher expectation if the variance is too

great, indicating that they think such situations have a higher risk than the

mere expectation.

(10) Strict risk aversity: a more exacting risk aversity. If X has any non-

determinancy in its outcome, it is regarded as more risky than a sure loss of

E(X).

(11) Law invariance: As noted in Section 2.1.2, the distribution functions of

random variables are all that matters in probability, and so any risk measure

meaningful in probability must be insensitive to any change of random vari-

able that leaves its distribution unchanged, that is, it must be law invariant.

For more extensive interpretations of these properties, the reader is directed

to the references in [Gia06].

2.2 Coherent risk measures (CRM)

2.2.1 Importance of coherence

The idea of coherence in risk measurement was first proposed in the context of

financial mathematics by [Art+99]. Artzner explicitly argued against using VaR,

due to its incoherence.



18 CHAPTER 2. THE GEOMETRY OF COHERENT RISK MEASURES

Example 2.23 (VaR is incoherent). Let Pr(X = −1) = Pr(X = +1) = 0.5,

and Y be an independent copy of X, then

VaR0.49(X + Y ) = 0 > VaR0.49(X) + VaR0.49(Y ) = −2.

Requiring a risk measure to be coherent incorporates several intuitions in

judging the risk of financial products, and by extension, risky non-financial situ-

ations. Detailed interpretation of these risk measurement intuitions are found in

[Art+99].

2.2.2 Conditional VaR (CVaR)

The conditional value-at-risk (CVaR) was proposed to be a coherent alternative

to VaR, and has achieved a preeminent position in financial risk management.

Intuitively, the CVaR at level α of a random loss X is the expectation of loss,

conditional on the loss being the worst (1− α) cases. That is,

CVaRα(X) = E(X|X > FX(α)) (2.8)

for any 0 ≤ α < 1. Note that when α = 0, FX(α) = −∞, and so E(X|X >

FX(α)) = E(X).

Remark 2.24. We will concentrate on the cases of 0 < α < 1 when discussing

CVaRα, since α = 0 gives expectation, and α = 1 gives essential supremum, both

cases being often easier to handle.

This naive definition unfortunately does not work when X is atomic, because

in such cases, FX has jump discontinuities where the value of FX(α) is ambiguous.

Fortunately, there is a more general definition that overcomes such problems

[RU02, Definition 3]:

Definition 2.25. For any 0 ≤ α < 1.

CVaRα(X) = E(X(α)) (2.9)

where X(α) is a random variable with the CDF

FX(α)(x) =

(
FX(x)− α

1− α

)+

(2.10)

Intuitively, to get the graph of FX(α) , take the graph of FX , truncate it above

the y = α line, and stretch it down to fill the 0 ≤ y ≤ 1 stripe again.
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Theorem 2.26 (CVaR is coherent, strictly risk averse, and law invariant). For

any 0 ≤ α ≤ 1, CVaRα is coherent, strictly risk-averse, and law invariant.

The only difficulty is in proving the subadditivity of CVaR. To show it, we

utilize equivalent ways to define CVaR, offering different perspectives on it. The

most useful ones for our purpose are

Proposition 2.27 (Equivalent formulations of CVaR). For any real random vari-

able X, and any 0 ≤ α < 1, we have

CVaRα(X) = min
s∈R

(
s+

1

α
E
(
(X − s)+

))
=

1

α

∫ 1

α

F−1
X (q)dq (2.11)

Proof. See [RU02, Theorem 10] and [AT02, Proposition 3.2].

As an example of the power of such representation, the subadditivity of CVaR

is now immediate:

Proof. For any α ∈ (0, 1), and real random variables X, Y , let

s1 ∈ arg min
s∈R

(
s+

1

α
E
(
(X − s)+

))
, s2 ∈ arg min

s∈R

(
s+

1

α
E
(
(Y − s)+

))
,

and

s0 = s1 + s2,

then we use the minimization definition of CVaR (Equation 2.11):

CVaRα(X + Y ) = min
s∈R

(
s+

1

α
E
(
(X + Y − s)+

))
≤ s0 +

1

α
E
(
(X + Y − s0)+

)
= s1 + s2 +

1

α
E
(
(X − s1 + Y − s2)+

)
≤
(
s1 +

1

α
E
(
(X − s1)+

))
+

(
s2 +

1

α
E
(
(Y − s2)+

))
= CVaRα(X) + CVaRα(Y ),

where we used the fact that for any two real numbers x, y, (x+y)+ ≤ x++y+.

Proposition 2.28 (Continuity of CVaR). For any real random variable X,

CVaRα(X) is a continuous function on 0 ≤ α ≤ 1.

Proof. By the integral definition of CVaR, CVaRα(X) is continuous on 0 ≤ α < 1.

If ess sup(X) <∞, then for any ε > 0, there exists α0 such that any α > α0,

F−1
X (α) > ess sup(X)− ε, and so CVaRα(X) > ess sup(X)− ε.

If ess sup(X) = ∞, the proof is similar, with an arbitrarily big M replacing

ess sup(X)− ε.
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2.2.3 The significance of CVaR

There are representation theorems, often named “Kusuoka representation”, with

the following format: On any “nice” probability space S, any law invariant CRM

F that is “nice” can be represented by convex integrals of CVaR.

Now we state this rigorously.

Definition 2.29. Given a closed and sublinear functional F on L 2, we say that

it has a Kusuoka representation if and only if it can be represented as

F(X) = sup
θ∈Θ

∫
[0,1]

CVaRα(X)dmθ(α) for all X ∈ L 2 (2.12)

where {mθ : θ ∈ Θ} is a family of probability measures on [0, 1].

Kusuoka representation theorems in general state that, if S and F satisfies

certain conditions, then F has a Kusuoka representation [PR08, Section 2.2.4].

The original theorem has been generalized to dizzying heights of abstraction,

which we will not review.

If the sup sign is removed, we obtain the class of spectral risk measures∗,

proposed in [Ace02]:

Definition 2.30. A spectral risk measure is any F defined by a probability

distribution m on [0, 1], and

F =

∫ 1

0

CVaRα dm(α) (2.13)

Definition 2.31. Two random variables X, Y : S → R are comonotone if for

all ω, ω′ ∈ S,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0, (2.14)

that is, X, Y rises and falls together.

A risk measure F is comonotone additive if for any comonotone X, Y ,

F(X + Y ) = F(X) + F(Y ). (2.15)

Proposition 2.32 (Kusuoka representation). Any risk function with Kusuoka

representation is a law invariant coherent risk measure.

If the probability space S is atomless, then the converse also holds.

A risk functional is a law invariant coherent and comonotone additive func-

tional if and only if it is a spectral risk measure.

Proof. See [NR15, Theorem 3.1].
∗Such representation is sometimes called Choquet representation, for example in [PR08,

Definition 2.48].
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2.3 The envelope representation of risk mea-

sures

In math, there is a common duality between analysis and geometry. The risk

measures, being analytical, have the dual representation as risk envelopes.

Definition 2.33. Given any nonempty subset F ⊆ L 2, its associated support

function is

σF (X) = sup{〈X,F 〉 |F ∈ F}

which we often write as F .

Given a functional F , if there exists some F ⊆ L 2, such that F = σF , then

we say that it has an envelope representation F .

2.3.1 The symmetry group on L 2

To describe the geometry of law-invariance, we define:

Definition 2.34. The symmetry group on L 2 is

G = {(◦f)|f is a measure-preserving bijection on S} (2.16)

Then G is a group that acts on L 2 on the right. This group action preserves

distribution, that is,

∀X ∈ L 2, (◦f) ∈ G, X ◦ f and X have the same distribution.

In particular, G-action preserves:

• law invariant functionals on L 2, such as the inner product and E;

• certain elements and subsets of L 2, such as 1, L 2
+, E=1, and D .

If we think of L 2 as a linear subspace of RS, then each element of G acts on

L 2 by a permutation of the coordinates.

2.3.2 Geometry of risk envelopes

There is a bijection between certain risk measures and risk envelopes [HL01,

Section C.3]:

{F | F : L 2 → (−∞,∞], sublinear and closed} (2.17)

↔{F |F ⊆ L 2, nonempty, closed, and convex} (2.18)
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with the bijection given explicitly by

F(X) = sup
Q∈F
〈X,Q〉 F = {Q ∈ L 2 : 〈X,Q〉 ≤ F(X),∀X ∈ L 2}. (2.19)

Remark 2.35. The sublinear and closed risk measures can be partially ordered

by

F ≥ G iff ∀X ∈ L 2,F(X) ≥ G(X) (2.20)

In terms of their risk envelopes,

F ≥ G iff G ⊆ F (2.21)

With this ordering, the set of all sublinear and closed risk measures becomes

a lattice [WM19a, Section 5.4]. Its maximal element is the essential supremum,

and its minimal element is the expectation. This explains the thesis title.

The following proposition enumerates the correspondence between analytic

properties of risk measure and geometric properties of its risk envelope. It is

[WM19a, Proposition 7].

Proposition 2.36. Suppose F : L 2 → (−∞,∞] is a sublinear, closed functional,

with envelope representation

F(X) = sup
Q∈F
〈X,Q〉 F = {Q ∈ L 2 : 〈X,Q〉 ≤ F(X),∀X ∈ L 2}

Then

(1) F is monotonic if and only if F ⊆ L 2
+.

(2) F is translation invariant if and only if ∀c ∈ R,F(c) = c, if and only if

F ⊆ E=1. In particular, if F is risk averse, then it is translation invariant.

(3) F is coherent if and only if F ⊆ L 2
+ ∩ E=1.

(4) F is risk averse if and only if 1 ∈ F .

(5) F is strictly risk averse if and only if F ⊆ E=1, and 1 is in the interior of

F relative to E=1.

(6) If F is monotonic and risk averse, with finite F(0), then let R = F∩E=1, and

R = σR be its support function, then R is closed, risk averse, and coherent.

Furthermore,

R(X) = inf
c∈R
F(X − c) + c ∀X ∈ L 2.
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(7) (a) If F is law invariant, then F is invariant under the action of G.

(b) If S is finite with uniform distribution, then the converse is true.

Proof. (1)

X ≤ Y ⇒ F(X) ≤ F(Y )

⇔ X ≤ Y ⇒ sup
Q∈F
〈X,Q〉 ≤ sup

Q∈F
〈Y,Q〉

⇔ X ≥ 0⇒ sup
Q∈F
〈X,Q〉 ≥ 0

⇔ F ⊆ L 2
+.

(2) We show that the three conditions imply each other in a circle.

If F is translation invariant, then since it is also positively homogeneous by

assumption,

∀c ∈ R,F(c) = c+ F(0) = c.

If

∀c ∈ R,F(c) = c+ F(0) = c,

then
F(±1) = ±1

⇒ sup
Q∈F

E(Q) = 1, sup
Q∈F

E(−Q) = −1

⇒ ∀Q ∈ F ,E(Q) = 1

⇒ F ⊆ E=1.

If F ⊆ E=1, then ∀X ∈ L 2
+, c ∈ R,

F(X + c) = sup
Q∈F

(〈X,Q〉+ c 〈1, Q〉)

= sup
Q∈F

(〈X,Q〉+ c)

= c+ sup
Q∈F

(〈X,Q〉)

= c+ F(X).

So F is translation invariant.

If F is strictly risk averse, then by definition of strict risk aversity, ∀c ∈
R,F(c) = c, so it is translation invariant.

(3) By parts (1), (2).
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(4) If 1 ∈ F , then

F(X) = sup
Q∈F
〈X,Q〉 ≥ 〈X,1〉 = E(X)

Conversely, if F is risk averse, then by definition of F , 1 ∈ F .

(5) Let

F0 = F − 1, F0 = σF0 = F − E

then the desired result is equivalent to

∀X ∈ E=0, X 6≡ 0⇒ ∃QX ∈ E=0, 〈X,QX〉 > 0

⇔ 0 is in the interior of F0 relative to E=0

If 0 is in the interior of F0 relative to E=0, then ∀X ∈ E=0, X 6≡ 0, there

exists θ > 0, θX ∈ F0, such that

F0(X) ≥ 〈X, θX〉 = θ‖X‖2 > 0

so F is strictly risk averse. If not, then either 0 6∈ F0, in which case F is not

even risk averse, or 0 is in the boundary of F0 relative to E=0.

Then, by [HL01, Lemma 4.2.1], there exists X0 ∈ E=0, X 6≡ 0, and a sup-

porting hyperplane h with normal vector X0, such that it supports F0 at 0.

But this implies that

F(X0) = sup
Q∈F
〈X0, Q〉

= sup
Q∈F0

〈X0, Q〉+ E(X0)

= 0 + 0 = 0 = E(X0)

so F is not strictly averse.

(6) By [HL01, Proposition 2.1.2], since R is a support function, it is closed,

convex, and positive homogeneous.

F is monotone ⇒ F ⊆ L 2
+ ⇒ R ⊆ L 2

+ ⇒ R is monotone.

Thus R ⊆ E=1 ⇒ R is translation invariant.

By [HL01, Equation 3.3.1],

R(X) = σF∩E=1(X)

= cl(σF ] σE=1)(X)
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where ] denotes the infimal convolution, such that

σF ] σE=1(X) = inf
Y ∈dom(σE=1

)
(σF (X − Y ) + σE=1(Y )) .

σF ] σE=1 is finite, since

σF ] σE=1(X) ≤ σF (0) + σE=1(X) = σF (0) + E(X) <∞.

Since dom(σE=1) = {c1 : c ∈ R}, and σE=1(c1) = c, we have

σF ] σE=1(X) = inf
c∈R

(F(X − c) + c).

By [HL01, Proposition 2.3.2], σF ] σE=1 is convex. Since a convex and finite

function is continuous, it is closed, so it equals its closure, and we obtain the

result.

(7) (a) If F is law invariant, then for all (◦f) ∈ G, since X ◦ f d
=X, we have

F(X ◦ f) = F(X), and by definition of F ,

F(X ◦ f) = σF◦f−1(X)

so F ◦ f−1 = F . So F is invariant under the action of G.

(b) If S is finite with uniform distribution, then any X, Y ∈ L 2
+ with the

same distribution, there exists permutation f on S such that X ◦ f = Y ,

and so

F(X ◦ f) = F(Y ) = F(X).

From this, we obtain another dual representation of coherent risk measures:

Proposition 2.37. For any closed, coherent risk measure F on L 2, there exists

a family Θ of probability measures on (S,B), such that for any X ∈ L 2,

F(X) = sup
θ∈Θ

Eθ(X) (2.22)

Proof. Take Q, the envelope representation of F . By Proposition 2.36,

Q ⊆ L 2
+ ∩ E=1

so for each Q ∈ Q, we can define a new probability measure on (S,Q) by

µQ(A) =

∫
x∈A

Q(x)dµ(x)

To see that µQ is a probability measure, note that:



26 CHAPTER 2. THE GEOMETRY OF COHERENT RISK MEASURES

• µQ is nonnegative, since Q ⊆ L 2
+.

• µQ =
∫
x∈S Q(x)dµ(x) = Eµ(Q) = 1, since Q ⊆ E=1.

Then let Θ = {µQ : Q ∈ Q}.

2.3.3 Envelope representation of CVaR

It is shown in [WM19a, Section 5.8] that, if we let

Cα =

 1
α
U∞ ∩D , when 0 ≤ α < 1

D , when α = 1
(2.23)

then CVaRα = σCα . Thus, the properties of CVaRcan be studied by studying the

geometry of Cα.

By algebraic manipulation, we have

Cα − 1 =
(
−α
α

(D − 1)
)
∩ (D − 1) (2.24)

Thus, Cα is the intersection of D with a homothetic copy of itself, with ho-

mothety center 1.

Given any risk measure F with envelope F and Kusuoka representation

F = sup
θ∈Θ

∫ 1

0

CVaRα dmθ(α),

we use [HL01, Table 3.3.1] to obtain the corresponding Kusuoka representation

of its envelope:

F = cl co
⋃
θ∈Θ

∫ 1

0

Cαdmθ(α). (2.25)

2.4 Finite dimensional Kusuoka representation

In Proposition 2.32, it is stated that when the probability space S is atomless,

any law invariant CRM over L 2 has a Kusuoka representation. This does not

hold in general when S has atoms.

In Section 2.4.1, we geometrically prove that when S = [n] with uniform

probability measure, then there exists Kusuoka representation for any closed, law

invariant CRM.

In Section 2.4.2, we show that in a nonuniform atomic probability space, there

exist closed, law invariant, strictly risk averse, coherent risk measures that can

be arbitrarily close to E, and yet has no Kusuoka representation.
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Note that the original Kusuoka representation theorem does not cover this

case, as S = [n] is the opposite of atomless.

2.4.1 The case of uniform probability on S

Take a closed, law invariant coherent risk measure F , and let its envelope repre-

sentation be F .

Let S = [n] = {1, 2, · · · , n}, where n is an integer at least 2. ν is uniform on

S. D is an n-simplex, with vertices

X1 = (n, 0, · · · , 0), · · · , Xn = (0, · · · , 0, n)

and center 1 = (1, · · · , 1, 1). Define the centers of sub-simplices of D as:

Ci =
1

n− i
(Xi+1 + · · ·+Xn), where i = 0, 1, · · ·n− 1

The case of n = 3 is sufficiently illustrative. As such, it will be used in drawing

the figures in this section. In such case, L 2 is just R3, and D is a triangle, with

vertices X1 = (3, 0, 0), X2 = (0, 3, 0), X3 = (0, 0, 3), and center 1 = (1, 1, 1).

Since ν is uniform on S, the possible measure-preserving bijections on S are

all permutations π of [n], and its symmetry group G is isomorphic to the sym-

metric group on n elements, with n! elements. The action of G is to permute the

coordinates of Rn, and for any X = (x1, · · · xn) ∈ Rn, the orbit of X under the

action of G is

G(x) = {(xπ(1), · · ·xπ(n)) : π permutes [n]}.

For a generic X ∈ Rn, its orbit has n! elements, but if some components of

X are equal, its orbit would have fewer elements. In particular, the orbit of

1 has only one element. Out of this orbit of X, a unique element in it has

its components arranged in nondecreasing order. That is, ∃π ∈ G, such that

X ◦ π = (xπ(1), · · ·xπ(n)), and xπ(1) ≤ · · · ≤ xπ(n).

Thus, we define the fundamental domain D0 of D under the symmetry group

G:

D0 := {X ∈ D : X = (x1, · · · , xn), x1 ≤ · · · ≤ xn} (2.26)

D0 is the convex hull of its n vertices, which are

{C0, C1, ..., Cn−1} . (2.27)

This is illustrated in Figure 2.1.
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Figure 2.1: The triangle D , when n = 3. Its three reflection symmetry axes are

marked by dashed lines. Its three vertices are X1 = (3, 0, 0), X2 = (0, 3, 0), X3 =

(0, 0, 3). Its center is C0 = 1 = (1, 1, 1). Its fundamental domain is the dark

triangle C0C1C2. The hexagon D1D2D3D4D5D6 is generated by the point D1 in

the fundamental domain.

D0 can be regarded as a set of representatives from D/G, and so, for any

X ∈ D , there exists a unique element from its orbit that is in D0. For any

F ⊆ D , if F is invariant under the actions of G, that is, F is law invariant, then

it is determined by F ∩D0, since it can be reconstructed by

F =
⋃
π∈G

(F ∩D0) ◦ π.

Let Θ = F ∩ D0. For each p ∈ Θ, let Pp be the convex hull of G(p), which

is shown in Figure 2.1 as a hexagon. Then it is geometrically clear that

F =
⋃
p∈Θ

Pp = cl co
⋃
p∈Θ

Pp. (2.28)

So by [HL01, Table 3.3.1], since F is the support function of ∪p∈ΘPp, which is

itself convex and closed, we have

F = sup
p∈Θ

σPp . (2.29)
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Finally, since each p ∈ Θ is in D0, it is a convex sum of the vertices

{C0, C1, ..., Cn−1} = {q0, q1, ...qn−1}.

Thus, there exists a tuple θp = (θp,0, ..., θp,n−1), such that each θp,i ≥ 0,
∑n−1

i=0 θp,i =

1, and

p =
n−1∑
i=0

θp,iCi,

which implies

Pp = co(G(p)) =
n−1∑
i=0

θp,i co(G(qi)),

where the second equality is illustrated in Figure 2.2.

Figure 2.2: The triangle D , with three hexagons generated by the points

D1, E1, F1 in the fundamental domain. F1 = θD1 + (1 − θ)E1. We have that

θG(D1) + (1− θ)G(E1) = G(θD1 + (1− θ)E1). In other words, the following two

operations commute: interpolating between points in the fundamental domain,

and generating a hexagon from a point in the fundamental domain.

Then, since co(G(qi)) = C i
n
, as illustrated in Figure 2.3, we have

F =
⋃
p∈Θ

Pp =
⋃
p∈Θ

(
n−1∑
i=0

θp,iC i
n

)
.

Taking the support function on both sides, by [HL01, Table 3.3.1] again,

F = sup
p∈Θ

n−1∑
i=0

θp,i CVaR i
n
.
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Figure 2.3: Cα is generated by A1, which moves in the fundamental domain as α

increases. When α ∈ [ k
n
, k+1

n
], A1 is on the segment CkCk+1.

We summarize the result in a proposition:

Proposition 2.38. If S = [n], n ≥ 2, and ν is uniform on S, then any closed,

sublinear, translation invariant, law invariant risk measure F is coherent.

Let its risk envelope be F . Let D0 be a fundamental domain of D , defined as

in Equation 2.26.

Define Θ = D0 ∩ ∂F , then for each p ∈ Θ, let Pp be the convex hull of

G(p), then there exists a tuple θp = (θp,0, ..., θp,n−1), such that each θp,i ≥ 0,∑n−1
i=0 θp,i = 1, and

Pp =
n−1∑
i=0

θp,iC i
n
, (2.30)

and we have the Kusuoka representation

F = sup
p∈Θ

n−1∑
i=0

θp,i CVaR i
n
. (2.31)

2.4.2 The case of nonuniform probability on S

Let S = [n] = {1, 2, · · · , n}, where n is an integer at least 2. Let ν be a nonuni-

form probability measure on S.



2.4. FINITE DIMENSIONAL KUSUOKA REPRESENTATION 31

For this section, we do a specific example, which is a sufficiently illustrative

example for the general n ≥ 2 cases.

Let n = 4; let ν be defined by

ν : 1 7→ 1

6
, 2 7→ 1

6
, 3 7→ 1

3
, 4 7→ 1

3

Thus, its symmetry group G has 4 elements, and breaks S into two orbits: {1, 2}
and {3, 4}.

Let the centroids of the orbits be A = X1+X2

2
, B = X3+X4

2
, and let C = 1.

Take any closed convex F ⊆ D that contains C in its interior (relative to D).

Connect A,B, making a line passing C and intersecting ∂F at two points D,E.

This is shown in Figure 2.4.

Define the line ratio of F be

LR(F ) = DC : CE,

and let r0 = LR(D) = AC : CB. Without loss of generality, assume that

AC ≥ CB, so that r0 ≥ 1.

In our particular example, it happens that AC =
√

10, CB =
√

10/2, so

r0 = 2.

For small α > 0, Cα is an inverted homothetic image of D , so LR(Cα) = 1/r0.

For big α < 1, we have D = A and E = B, so LR(Cα) = r0. Between them, we

have

∀α ∈ (0, 1], LR(Cα) ∈ [1/r0, r0].

This is in fact true in general for all Kusuoka-representable sets:

Proposition 2.39 (Kusuoka set line ratio). Take any nontrivial Kusuoka set, as

defined in Equation 2.25:

F = cl co
⋃
θ∈Θ

∫ 1

0

Cαdmθ(α),

and assume it is nontrivial, that is, F 6= {1}. Then LR(F ) ∈ [1/r0, r0].

Proof. (Sketch) Refer to Figure 2.4.

Translate the origin of the coordinate frame to point C. So, for example, A

in the new coordinate frame is (2, 2,−1,−1).

For each point P ∈ Rn, let f(P ) be its projection onto the line AB, and

define d(P ) to be the directed distance from C to f(P ). So, for example, d(A) =√
10, d(B) = −

√
10/2.
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Since the affine subspaces spanned by {X1, X2} and spanned by {X3, X4} are

perpendicular to line AB, the projection of D onto the line AB is the line segment

[A,B].

Then, for any α ∈ (0, 1],

f(Cα) = [Dα, Eα] = AB ∩ Cα,

where we append the subscript α to D,E to denote its association with Cα. Then

the line ratio of Cα is

LR(Cα) = −d(Dα)

d(Eα)
∈ [1/r0, r0]

For any probability measure mθ on [0, 1], let Pθ =
∫ 1

0
Cαdmθ(α). Then

f(Pθ) = [Dθ, Eθ], where

d(Dθ) =

∫ 1

0

d(Dα)dmθ(α), d(Eθ) =

∫ 1

0

d(Eα)dmθ(α).

Thus,

LR(Pθ) = −d(Dθ)

d(Eθ)
∈ [1/r0, r0].

Finally, let F = cl co
⋃
θ∈Θ Pθ, we have

d(F ) =

[
inf
θ∈Θ

d(Eθ), sup
θ∈Θ

d(Dθ)

]
,

and so

LR(F ) ∈ [1/r0, r0].

To violate this line ratio, simply take a closed ball of very small radius r, in

D around 1, then shift it by (1− ε)r in the direction of X1+X2

2
− X3+X4

2
. Let the

resulting set be F , then F = σF is a closed, law invariant, strictly risk averse,

coherent risk measure that can be arbitrarily close to E, and yet has no Kusuoka

representation.

Also, note that if we shift the ball by (1+ε)r instead, then we obtain a closed,

law invariant, coherent risk measure that is not risk averse, and can be arbitrarily

close to E. This contrasts with the case of uniform probability on S, where any

law invariant, coherent risk measure is either E or strictly risk-averse.

We record this formally as:

Proposition 2.40. If S = [n], n ≥ 2, and ν is nonuniform on S, then there exists

closed, law invariant, risk averse, coherent risk measures that are arbitrarily close

to E, and yet have no Kusuoka representations.
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Figure 2.4: When n = 4, D is a tetrahedron, centered at C = 1 = (1, 1, 1, 1).

With the ν defined in the text, the tetrahedron is not regular. For a small α,

Cα is a small homothetic copy of D , here drawn in the center in gray. The “line

ratio” is obtained by connecting (X1 + X2)/2 and (X3 + X4)/2, cutting Cα at

D,E, then defining the ratio as DC : CE.
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Figure 2.5: To construct a closed, law invariant, strictly risk averse, coherent risk

measure that has no Kusuoka representation, take a small closed ball around 1,

then shift it along the line connecting (X1 + X2)/2, (X3 + X4)/2, until its line

ratio moves out of the bound.



Chapter 3

Inequalities of coherent risk

measures

Inequalities are the foundation of any analytical treatment of a subject. Here, we

collect and prove many inequalities for coherent risk measures. Most of them are

generalizations to inequalities that involve expectation.

We cannot find in the literature the inequalities that follow, so we believe

these are new results. However, in [ZU16, Chapter 3], the authors presented

similar probability inequalities for general risk measures.

3.1 Elementary inequalities

Proposition 3.1 (Cauchy–Schwarz inequality). For any sublinear, monotonic

functional F on L 2, and any X, Y ∈ L 2, if F(XY ) ≤ 0, then

F(XY )2 ≤ F(X2)F(Y 2) (3.1)

Similarly, if F(−XY ) ≤ 0, then

F(−XY )2 ≤ F(X2)F(Y 2) (3.2)

Proof. For the first case, let λ = F(XY )/F(Y 2), and expand the right side of

0 ≤ F((X − λY )2)

.

The second case is converted to the first case by changing the sign of X.

35
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Jensen’s inequality does not generalize easily. [CHK13, Theorem 3] shows that

any coherent risk measures that is a g-expectation obeys Jensen’s inequality, but

since we have no use for g-expectation in this thesis, this result will be skipped.

Two inequalities for expectations extend trivially via the dual representation

of coherent risk measures (Proposition 2.37).

Proposition 3.2 (Hölder inequality). For any closed, coherent risk measure F
on L 2, and any p, q > 0 such that 1

p
+ 1

q
= 1, for any X, Y ∈ L 2 with finite

E(|X|p),E(|Y |q), then

F(|XY |) ≤ F(|X|p)1/pF(|Y |q)1/q. (3.3)

Proof. As in Equation 2.22, take the dual representation of F :

F(Z) = sup
θ∈Θ

Eθ(Z)

Then

F(|XY |) = sup
θ∈Θ

Eθ(|XY |)

≤ sup
θ∈Θ

(
Eθ(|X|p)1/pEθ(|Y |q)1/q

)
(Hölder inequality)

≤
(

sup
θ∈Θ

Eθ(|X|p)1/p

)(
sup
θ∈Θ

Eθ(|Y |q)1/q

)
=

(
sup
θ∈Θ

Eθ(|X|p)
)1/p(

sup
θ∈Θ

Eθ(|Y |q)
)1/q

= F(|X|p)1/pF(|Y |q)1/q.

Proposition 3.3 (Minkowski inequality). Under the same assumptions as above,

F(|XY |) ≤ F(|X|p)1/p + F(|Y |q)1/q. (3.4)

Proof. Essentially the same as the previous proof.

3.2 Concentration inequalities

A “nice” random variable should be “far” to its expectation with a small proba-

bility, that is, its value should be concentrated around its expectation. Concen-

tration inequalities quantify this vague statement in various ways.
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In this section, we prove generalizations of Markov, Chebyshev, Chernoff,

Hoeffding, Bennett, and Bernstein’s inequalities. These inequalities are the most

important tail inequalities, heavily used in all parts of statistics, probability, and

machine learning. As one example, the Hoeffding inequality is the basis of the

popular Monte Carlo tree search algorithm UCT[KS06].

Proposition 3.4 (Markov’s inequality). Given any monotonically increasing φ :

[0,∞) → [0,∞), any a ≥ 0, X ∈ L , and monotonic, positively homogenous

functional F ,

F(φ(|X|)) ≥ φ(a)F(1|X|≥a) (3.5)

Similarly, if φ : R→ [0,∞) is monotonically increasing, then for any a,

F(φ(X)) ≥ φ(a)F(1X≥a) (3.6)

Proof. For the first case, since φ(|X|) ≥ φ(a)1|X|≥a, by monotonicity of φ and

positive homogeneity of F ,

F(φ(|X|)) ≥ F(φ(a)1|X|≥a) = φ(a)F(1|X|≥a).

Similarly for the second case.

Proposition 3.5 (Chebyshev’s inequality). Given any a > 0, X ∈ L , and mono-

tonic, positively homogenous functional F ,

F(1|X|≥a) ≤
1

a2
F(X2) (3.7)

Proof. Let φ(a) = a2 in the first Markov’s inequality.

Proposition 3.6 (Chernoff bound). Given any t > 0, X ∈ L , and monotonic,

positively homogenous functional F ,

lnF(1X≥t) ≤ − sup
a≥0

(ta− lnF(eaX)) (3.8)

Proof. Let φ(x) = etx in the second Markov’s inequality, to get

F(1X≥t) ≤ e−taF(etX) for any a > 0.

Then take logarithm on both sides, and take the infimum over a > 0 on the

right side.

Note that the a = 0 case gives lnF(1X≥t) ≤ 0, which is trivially true, since

F(1X≥t) ≤ F(1) = 1,

so it can be incorporated safely into the infimum.
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We record a particularly useful case for CVaR:

Corollary 3.7 (Chernoff bound for CVaR). Given any real random variable X

with finite first moment, any α ∈ [0, 1], and any a > VaRα(X), we have

Pr(X ≥ a) ≤ α inf
t>0

CVaRα(etX)e−ta (3.9)

Proof. In Chebyshev’s inequality, replace F , a,X by CVaRα, 1, e
t(X−a)/2, to ob-

tain

CVaRα(1X≥a) = CVaRα(1et(X−a)/2≥1) ≤ CVaRα(et(X−a)) = CVaRα(etX)e−ta

for any t > 0.

Since a > VaRα(X), we have Pr(X ≥ a) ≤ α, and so

CVaRα(1X≥a) = min(1, P r(X ≥ a)/α) = Pr(X ≥ a)/α.

Optimize over t to obtain the result.

Proposition 3.8 (Hoeffding’s lemma). For any coherent risk measure F on L ,

and X such that Pr(a ≤ X ≤ b) = 1, let

c(t) =
F(X) + F(−X)

et(b−a) − 1
,

then for any t ∈ R, t 6= 0,

F(exp [t(X −F(X)− c(t))]) ≤ exp

(
1

8
(b− a)2t2

)
(3.10)

Proof. Rewrite X as a convex sum of a, b:

X = θb+ (1− θ)a.

By convexity of x 7→ etx,

etX ≤ θetb + (1− θ)eta =
1

b− a
((X − a)etb + (b−X)eta)

Then by the coherence of F ,

F(etX) ≤ etb

b− a
(F(X)− a) +

eta

b− a
(F(−X) + b)

Replace X by X − F(X) − c(t) in the above equation, and simplify, using

translation invariance of F , to cancel out the F terms on the right. This yields

F(exp [t(X −F(X)− c(t))]) ≤ beta − aetb

b− a
= eg(u)
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where 
u = t(b− a)

g(u) = −γu+ ln(1− γ + euγ)

γ = − a
b−a

Since 
g(0) = 0

g′(0) = 0

g′′(u) ≤ 1
4

for u ≥ 0

we have

g(u) ≤ 1

8
u2 =

1

8
t2(b− a)2

yielding the result.

Hoeffding’s lemma is often used to prove Hoeffding’s inequality. However, the

proof does not generalize immediately to general CRM, or even CVaR, because

it depends on that for any two independent X, Y ∈ L 1, E(XY ) ≤ E(X)E(Y ),

which is false for CVaR in general:

Example 3.9. Given independentX, Y , it is not the case that F(XY ) = F(X)F(Y ).

In fact, even for CVaRα, it is possible for one side to be arbitrarily greater than

the other.

Let X, Y both have the distribution on {−T, T} defined by

Pr(X = −T ) =
3

4
, P r(X = T ) =

1

4

T being a positive constant, then

CVaR1/2(X) = CVaR1/2(Y ) = 0

CVaR1/2(XY ) = T 2

so CVaR1/2(XY ) can be arbitrarily greater than CVaR1/2(X) CVaR1/2(Y ).

However, when X, Y ≥ 0 almost surely, we do have:

Proposition 3.10. For any two independent X, Y ∈ L 1 that are almost surely

non-negative, and any α ∈ [0, 1],

CVaRα(XY ) ≤ CVaRα(X) CVaRα(Y ). (3.11)
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Proof. By continuity of CVaRα with respect to α, it suffices to prove this for all

rational α ∈ (0, 1).

By closedness of CVaRα, it suffices to prove this for all X, Y in a dense subset

of L 1.

For any α = m
n

, with 0 < m < n integers, we prove this proposition for the

dense subset of L 1:{
X ∈ L 1 : X has distribution

1

N

N∑
i=1

δxi , n divides N, and all xi ≥ 0

}
.

This subset is chosen, because it makes CVaRα(X) easy to calculate:

CVaRα(X) =
1

αN

∑
(the biggest αN terms of xi)

for any such X. That is, the average of the largest αN terms of the sequence.

We write this as xαN

Now, it remains to show that for any two such sequences (xi)
N
i=1, (yi)

N
i=1, we

have

(xy)αN2 ≤ xαNyαN

The proof proceeds by modifying the sequences X, Y until they become trivial,

preserving the inequality along the way.

Let 0 ≤ y1 ≤ · · · ≤ yN , so that

yαN =
1

αN

N∑
i=αN+1

yi.

Now let ε = yN−yαN+1, and decrease yN by ε. This decreases CVaRα(X) CVaRα(Y )

by ε
αN

CVaRα(X).

Since it decreases the entries in the list {xiyj}i,j∈[N ] by εx1, ..., εxN , 0, 0, ...0, it

decreases CVaRα(XY ) by at most

ε

αN2
(x1 + · · ·+ xN) ≤ ε

αN
CVaRα(X).

Thus, each such reduction decreases CVaRα(X) CVaRα(Y ) more than CVaRα(XY ).

So if after such decrease, the inequality holds, the inequality still holds before the

decrease.

After doing this decrease for αN times on y, then on X, we have the largest

αN entries of x equal, and the same for Y , and so

CVaRα(X) CVaRα(Y ) = max(X) max(Y ) = max(XY ) ≥ CVaRα(XY ).
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Now we are ready to prove generalized Hoeffding, Bennett, and Bernstein’s

inequalities.

Definition 3.11. The cumulant generating function of CVaRα is

KαX(t) = log CVaRα(etX). (3.12)

Proposition 3.12 (Hoeffding’s inequality). Let X1, ...Xn be a sequence of inde-

pendent real random variables, with each Xi ∈ [ai, bi] almost surely. Let α ∈ [0, 1),

then ∀t > 0,

Pr

(
n∑
i=1

(Xi − CVaRα(Xi)) ≥ t

)
≤

α exp

(
− 2t2∑n

i=1(b1 − ai)2
+

n∑
i=1

CVaRα(Xi) + CVaRα(−Xi)

bi − ai

)
.

(3.13)

Proof. Define for all i ∈ [n],

ci(s) =
CVaRα(Xi) + CVaRα(−Xi)

es(bi−ai) − 1

For any t, and any s > 0, such that t+
∑n

i=1(CVaRα(Xi)+ci(s)) > VaRα(
∑n

i=1Xi),

we have by Chernoff bound,

1

α
Pr

(
n∑
i=1

Xi ≥ t+
n∑
i=1

(CVaRα(Xi) + ci(s))

)
≤ CVaRα(es

∑n
i=1Xi)e−st−s

∑n
i=1(CVaRα(Xi)+ci(s))

= CVaRα

(
n∏
i=1

es(Xi−CVaRα(Xi)−ci(s))

)
e−st

≤ e−st
n∏
i=1

CVaRα

(
es(Xi−CVaRα(Xi)−ci(s))

)
≤ exp

(
−st+

s2

8

n∑
i=1

(bi − ai)2

)

So for any t > VaRα(
∑n

i=1Xi), and any s > 0,

1

α
Pr

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−st+ s

n∑
i=1

CVaRα(Xi) + s
n∑
i=1

ci(s) +
1

8
s2

n∑
i=1

(bi − ai)2

)
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Since for all s > 0,

sci(s) ≤
CVaRα(Xi) + CVaRα(−Xi)

bi − ai
we have

1

α
Pr

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−st+ s

n∑
i=1

CVaRα(Xi) +
1

8
s2

n∑
i=1

(bi − ai)2+

n∑
i=1

CVaRα(Xi) + CVaRα(−Xi)

bi − ai

)
.

So for all t > VaRα(
∑n

i=1Xi),

Pr

(
n∑
i=1

Xi ≥ t

)
≤ α inf

s>0
exp

(
−st+ s

n∑
i=1

CVaRα(Xi) +
1

8
s2

n∑
i=1

(bi − ai)2+

n∑
i=1

CVaRα(Xi) + CVaRα(−Xi)

bi − ai

)
.

When t ≤
∑n

i=1 CVaRα(Xi), the right side is ≥ α, which makes the inequality

useless, as the left side is ≤ α from t > VaRα(
∑n

i=1 Xi).

So assume that t >
∑n

i=1 CVaRα(Xi), which implies t > VaRα(
∑n

i=1Xi).

Then, taking the minimum on the right side gives

Pr

(
n∑
i=1

Xi ≥ t

)
≤

α exp

(
−2 (t−

∑n
i=1 CVaRα(Xi))

2∑n
i=1(bi − ai)2

+
n∑
i=1

CVaRα(Xi) + CVaRα(−Xi)

bi − ai

)
which is equivalent to what we need to prove.

Proposition 3.13 (Bennett’s inequality). Let X1, ...Xn be a sequence of inde-

pendent real random variables, with each CVaRα(Xi) = 0, and Xi ≤ a almost

surely. Let α ∈ [0, 1), and let

vα =
n∑
i=1

CVaRα(X2
i ),

then ∀t > 0,

Pr

(
n∑
i=1

Xi ≥ t

)
≤ α exp

(
−vα
a2
h

(
at

vα

))
(3.14)

where

h(t) = (1− t) ln(1 + t)− t (3.15)
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Proof. Let

ψ(x) = ex − 1− x

so that

ψ(x) =

≤ 1
2
x2 when x ≤ 0

≥ 1
2
x2 when x ≥ 0

As in the previous proof, for all s > 0, t > VaRα(
∑n

i=1 Xi),

1

α
Pr

(
n∑
i=1

Xi ≥ t

)
≤ e−st

n∏
i=1

CVaRα

(
esXi

)
Then

CVaRα

(
esXi

)
= CVaRα (1 + sXi + ψ(sXi))

≤ 1 + sCVaRα(Xi) + CVaRα(ψ(sXi))

= 1 + CVaRα(ψ(sXi))

≤ exp (CVaRα(ψ(sXi)))

So,

Pr

(
n∑
i=1

Xi ≥ t

)
≤ α exp

(
−st+

n∑
i=1

CVaRα(ψ(sXi))

)
Let X+

i = max(Xi, 0), X−i = max(−Xi, 0), so that Xi = X+
i − X−i , and by

convexity of ψ,

ψ(sXi) ≤ ψ(sX+
i ) + ψ(−sX−i )

By bounds on ψ,

ψ(−sX−i ) ≤ 1

2
s2(X−i )2 ≤ (X−i )2

a2
ψ(as)

For any s > 0, x ∈ [0, 1],

ψ(sx) =
1

2
s2x2 +

1

6
s3x3 + · · · ≤ x2(

1

2
s2 +

1

6
s3 + · · · ) = x2ψ(s)

So

ψ(sX+
i ) = ψ(as(Xi/a)+) ≤ (X+

i )2

a2
ψ(as)

So

ψ(sXi) ≤ ψ(as)
1

a2

(
(X+

i )2 + (X−i )2
)

=
ψ(as)

a2
X2
i

By monotonicity and positive homogeneity of CVaRα,

CVaRα(ψ(sXi)) ≤
ψ(as)

a2
CVaRα(X2

i )
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so

Pr

(
n∑
i=1

Xi ≥ t

)
≤ α exp

(
−st+

vαψ(as)

a2

)
for any s > 0. Optimizing the right side by s = 1

a
ln(1+at/vα), we get the desired

inequality.

Using the simple inequality

∀t ≥ 0, h(t) ≥ t2

2 + 2t/3

we obtain

Corollary 3.14 (Bernstein’s inequality). Let X1, ...Xn be a sequence of indepen-

dent real random variables, with each CVaRα(Xi) = 0, and Xi ≤ a almost surely.

Let α ∈ [0, 1), and let

vα =
n∑
i=1

CVaRα(X2
i ),

then ∀t > 0,

Pr

(
n∑
i=1

Xi ≥ t

)
≤ α exp

(
− t2

2vα + 2at/3

)
(3.16)

3.2.1 A conjecture

The conditional CVaRcan be defined in the same way as conditional expectation.

So for example, if X, Y ∈ L 1 are independent, then CVaRα(X|Y ) = CVaRα(X).

The Law of Total Expectation states that

E(X) = E(E(X|Y )) (3.17)

The following conjecture was numerically found and verified for several million

examples of discrete X, Y :

Conjecture 3.15 (Law of total CVaR). For any two independent X, Y ∈ L 1

that are almost surely non-negative, and any α ∈ [0, 1),

CVaRα(X) ≤ 1

α
CVaRα(CVaRα(X|Y )). (3.18)

Further, this is sharp in that for any ε ∈ (0, 1), 1
α

cannot be replaced by 1
α1−ε
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In proofs of martingale inequalities of expectation, such as McDiarmid’s in-

equality and Doob’s martingale inequality, the law of total expectation is used,

so it stood to reason that a law of total CVaRwould be required for a proof of

martingale inequalities for CVaR.

Unfortunately, even assuming the conjecture to be true, no valuable general-

ization of martingale inequalities to CVaRwere discovered.

3.3 Statistical learning theory (SLT)

Learning theory is the theoretical counterpart of practical machine learning, and

one of its main branches is statistical learning theory (SLT). For a historical

overview up to 1999, see [Vap00, Introduction]. For a detailed introduction to

SLT, see [BBL03].

SLT models the problem of learning by positing a learner who is trying to

find the best model out of a class of models, given some training data.

3.3.1 Overview of SLT

Formally, let X be a nonempty set called feature space, and Y be another

nonempty set called label space. Let there be a probability distribution µ on

Z = X × Y . This specifies the learning problem.

For example, suppose the problem is to predict the height based on biological

sex only, the feature space would be {male, female}, and the sample space [0,∞).

The distribution µ is the probability distribution of a random person from the

population having the specified sex and height. In particular, µ(male, [150, 160])

is the probability that a random person would be male and having height between

150 and 160 cm.

The learner is given a sequence of n training data sampled from µ, that is,

it is given

Zn = (Z1, · · · , Zn) ∈ Zn

The learner already knows X ,Y , so it can start with the hypothesis class

H, a set of hypotheses h : X → Y .

The problem of the learner, then, is to find the best hZn , given training data

Zn.

To formalize “best”, a loss function ` : Y ×Y → [0,∞) is defined, such that

`(y, y′) measures how different y, y′ are. Given a hypothesis h, and a new data

point (x, y), `(h(x), y) measures how badly the hypothesis errs on the data point.
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The simplest loss function is:

Definition 3.16 (0-1 loss). The 0-1 loss is

`01(y, y′) =

1 if y 6= y′,

0 else.
(3.19)

More complex loss functions are often used, such as the quadratic loss, widely

used in problems where the label space is continuous rather than discrete:

`01(y, y′) = (y − y′)2 (3.20)

however, we have not generalized our results to such loss functions.

To judge the overall performance of hypothesis h, the expectation of loss is

used:

Definition 3.17 (Expected loss function).

Loss(h, µ) = E(X,Y )∼µ(`(h(X), Y )) (3.21)

where the subscript of E(X,Y )∼µ means that (X, Y ) are random variables with

joint probability measure µ(X,Y ) = µ.

Suppose the learner knows µ, then it could just return the optimal solution

(sometimes called the Bayes classifier)

h∗ = arg min
h∈H

Loss(h, µ),

with minimal loss (the Bayes risk)

L∗ = min
h∈H

Loss(h, µ) = Loss(h∗, µ).

But almost always, µ is inaccessible, and the learner may only access Zn, with

which it constructs an approximation of µ, with which it selects a good hypothesis

hZn , such that (Loss(hZn , µ)− L∗) is small.

However, if Zn happens to be a very unlucky draw, it would give a bad

approximation of µ, from which the learner has no chance of learning well. To

deal with such unlucky cases, instead of perfectly reliable learning, the concept

of probably approximately correct (PAC) learning ∗ is used:

∗As a historical note, PAC-learning is proposed by Leslie Valiant in 1984 [Val84], and Valiant

is quite enamored with it, recently proposing that the concept of evolvability, a fundamental

notion of biological evolution and a significant ingredient in the explanation of life on earth, is

a special case of PAC-learnability [Val09].
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Definition 3.18 (PAC-learnability). Given a hypothesis class H on the spaces

X ,Y , the hypothesis class is PAC-learnable if there exists a learner function

Zn 7→ hZn , such that for any probability measure µ over X × Y , and any ε >

0, δ > 0, there exists some N ∈ N, such that for any integer n > N ,

Pr(X,Y )∼µ(Loss(hZn , µ)− L∗ < ε) > 1− δ (3.22)

where L∗ = minh∈H Loss(h, µ).

In other words, given enough samples, the probability of learning a bad hy-

pothesis is low, regardless of the truth µ. This can be reformulated as a conver-

gence in probability:

min
h∈H

Loss(h, µZn)
Pr→min

h∈H
Loss(h, µ) (3.23)

In other words,

min
h∈H

Loss(h, µZn)

is a consistent estimator of minh∈H Loss(h, µ).

Just from the definition, it is unclear whether any nontrivial learning problem

is PAC-learnable. However, as it turns out, even the most naive learner, the

empirical risk minimizer (ERM), can PAC-learn some nontrivial problems, as

will be demonstrated in Theorem 3.26.

Definition 3.19 (Empirical risk minimizer). Given a loss function ` and a hy-

pothesis class H, its associated empirical risk minimizer is defined by

hZn = arg min
h∈H

1

n

n∑
i=1

`(h(xi), yi) (3.24)

where Zn = ((x1, y1), ..., (xn, yn)). It is often written as ERMH, with ` elided.

In other words, upon receiving the training samples Zn, it constructs µZn

as the empirical approximation of µ, then chooses the hypothesis h ∈ H that

minimizes Loss(h, µZn),

Notation 3.20. For any Zn ∈ Zn, µZn is the empirical distribution on X × Y
defined by

µZn =
1

n

n∑
i=1

δ(Xi,Yi) (3.25)



48 CHAPTER 3. INEQUALITIES OF COHERENT RISK MEASURES

So we can more succinctly write Equation 3.24 as

hZn = arg min
h∈H

Loss(h, µZn) (3.26)

For an ERM learner to perform well, it must receive a training sample Zn

that closely represents µ. This can be formalized by the concept of

Definition 3.21 (ε-representative sample). A sample Zn is ε-representative

sample with respect to H if

sup
h∈H
|Loss(h, µZn)− Loss(h, µ)| ≤ ε (3.27)

Certain hypothesis classes can be easily ε-represented, while others cannot.

For example, with respect to the trivial class H = {h} with only one hypothesis

allows any Zn to well, trivially 0-represent µ. In contrast, if H is big, it will

be difficult to represent µ well, since there is likely a h ∈ H that fits Zn very

well, but fits µ poorly. This is essentially one manifestation of the problem of

overfitting.

To formalize this notion of certain hypothesis classes being easier to allow

good representation, we define:

Definition 3.22 (Uniform convergence). A hypothesis class H has uniform con-

vergence property if there exists nH : (0, 1) × (0, 1) → N, such that for any

distribution µ over X × Y , for any ε, δ ∈ (0, 1), and any n > nH(ε, δ), we have

PrZn∼µn(Zn is ε-representative) > 1− δ (3.28)

To say that H has uniform convergence is to say that a uniform weak law of

large numbers holds. In detail, for any hypothesis h ∈ H and any probability

distribution µ over X × Y , let (zn)n be an IID sequence sampled from µ, then

Loss(h, µZn) =
1

n

n∑
i=1

`(h(xi), yi)
Pr→Loss(h, µ)

and this convergence in probability is uniform over µ and h.

That H is uniformly convergent is a strictly stronger hypothesis than that

ERMH is a PAC-learner. To see this, note that the ERM learner is a PAC-

learner if

min
h∈H

Loss(h, µZn)
Pr→min

h∈H
Loss(h, µ)

uniformly over µ. This has one less uniformity condition, and thus weaker.
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Proposition 3.23. If a hypothesis class is uniformly convergent, then the ERMH

learner is a PAC-learner.

Proof. Given any distribution µ, let the Bayes hypothesis be h∗ and the Bayes

loss be L∗. Now, for any ε, δ ∈ (0, 1), and any n > nH(ε, δ), let Zn be the training

data sampled out of µn, and hZn be the hypothesis produced by the ERMH

learner.

With probability above 1− δ, Zn is ε-representative, then we have

Loss(µ, hZn) ≤ Loss(µZn , hZn) + ε ≤ Loss(µZn , h
∗) + ε ≤ Loss(µ, h∗) + 2ε = L∗ + 2ε

Thus

|Loss(µ, hZn)− L∗| ≤ 2ε.

Thus

PrZn∼µn(|Loss(µ, hZn)− L∗| ≤ 2ε) ≥ 1− δ.

In general, any learner must balance between too much overlearning and un-

derlearning. Underlearning occurs when the learner fails to extract sufficient

information from its training data, while overlearning occurs when the learner

extracts too much from its training data.

Consider a human pupil learning from a textbook on arithmetics. An under-

learner might read through the textbook and remain the same as before, while an

overlearner might memorize every single word, but fail to do any problem that

does not appear in the book.

For the ERMH learner, its hypothesis class H is the deciding factor for

whether it would underlearn or overlearn. Intuitively, if H is small, for example,

having only size 2, then no matter how rich the training samples are, the learner

could only encode one bit of information in its final choice of hypothesis. One

might say that the learner has only one bit of memory. This is a severe under-

learner. If H is too big, for example, containing every single function of type

X → Y , then the ERMH learner would simply “memorize” the whole training

sample, with no regard for generalization outside it. Figure 3.1 depicts these two

pathologies of learning.

The key to a good ERMH learner is a hypothesis class H with the right level

of complexity, † not so big as to cause overlearning, but not so small as to cause

underlearning.

†Other words for this nebulous concept include “capacity”, “expressiveness”, “richness”,

“expressive power”, and “flexibility”.
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Figure 3.1: Illustration of over- and underlearning. The black crosses are the

training samples. The straight line is the hypothesis learned by an underlearner,

while the spiky line is the hypothesis learned by an overlearner.

One useful definition of the complexity of a hypothesis class is its Vapnik–

Chervonenkis dimension (VCdim), first proposed in 1968 [VC71].

Definition 3.24. Given the feature space X , binary label space Y = {0, 1}, and

a set of feature points x1, ...xn ∈ X , a hypothesis class H shatters the set of

feature points if, for any set of labels y1, ..., yn ∈ Y , there exists a hypothesis

h ∈ H such that

h(xi) = yi, ∀i ∈ [n]

Definition 3.25. For any hypothesis class H on the spaces X ,Y , the Vapnik–

Chervonenkis dimension ofH, written as V Cdim(H), is the size of the biggest

subset of X that can be shattered by H. If there is no maximal size, then

V Cdim(H) =∞.

3.3.2 The fundamental theorem of SLT

Speculations about the meaning of life aside, the theory of PAC-learnability is

very difficult, and the “fundamental theorem” concerns itself with only binary

classification problems. That is, the label space Y = {0, 1}, and the loss function

` is the 0-1 loss.

Under such restrictive conditions, we have [SB14, Theorem 6.7]:

Theorem 3.26. Given any learning problem X ,Y = {0, 1}, with hypothesis class

H, and loss function being 0-1 loss, the following conditions are equivalent:
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(1) H is uniformly convergent.

(2) ERMH is a PAC-learner for this problem.

(3) This problem is PAC-learnable.

(4) V Cdim(H) is finite.

Proof. (1)⇒ (2): Proved in Proposition 3.23.

(2)⇒ (3): Trivial.

(3)⇒ (4): This step uses the no free lunch theorem.

(4)⇒ (1): There is a purely combinatorial proof, which we skip.

Given any finite VC-dimensional hypothesis class, there are explicit bounds

nH(ε, δ) on how many samples the ERMH learner need in order to accomplish

PAC-learning, which are given quantitatively by combinatorial calculations in the

(4)⇒ (1) step. We will not need explicit bounds in the proof.

In order to complete the (3)⇒ (4) step, we present the no free lunch theorem.

The proof can be found in [SB14, Theorem 5.1]

Theorem 3.27 (no free lunch). Given any feature space X , and binary sample

space {0, 1}, let the loss function ` be 0-1 loss, then for any learner Zn 7→ hZn

and any positive integer n ≤ 1
2
|X | there exists a probability distribution µ on

X × {0, 1}, so that there exists some

h∗ : X → {0, 1})

such that Loss(h∗, µ) = 0, and yet

PrZn∼µn

(
Loss(hZn , µ) ≥ 1

8

)
≥ 1

7
(3.29)

Given the no free lunch theorem, we can complete the proof of Theorem 3.26:

Proof of (3)⇒ (4). Suppose (3) and not (4).

By (3), PAC-learning is possible, so there exists some n, such that for any

probability distribution µ on X × {0, 1}, we have PAC-learning

PrZn∼µn

(
Loss(hZn , µ) ≥ arg min

h∈H
Loss(h, µ) +

1

8

)
<

1

7
.

By not (4), V Cdim(H) = ∞, and so there exists some {x1, ..., xn} ∈ X that

is shattered by H, that is, any partial hypothesis h∗ : X → {0, 1} can be realized

by some h in H.
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Then by no free lunch theorem, there exists a distribution µ on {x1, ..., xn}×
{0, 1}, such that, after extending µ to the rest of X × {0, 1}, satisfies

arg min
h∈H

Loss(h, µ) = 0,

P rZn∼µn

(
Loss(hZn , µ) ≥ 1

8

)
≥ 1

7
.

This is a contradiction.

3.3.3 Generalization to CVaR

The fundamental theorem of SLT can be easily generalized by replacing expec-

tations with CVaR, after an appropriate generalization of PAC-learnability to

arbitrary risk measures.

Definition 3.28 (F -expected loss function). For any risk measure F : L → R
on real random variables, not necessarily the expectation or CVaR, we define a

generalized expected loss function. For any hypothesis h and distribution µ on

X × Y ,

LossF(h, µ) = F(`(h(X), Y )) (3.30)

where `(h(X), Y ) is a random variable with (X, Y ) ∼ µ.

By replacing Loss with LossF in their definitions, we can generalize PAC-

learnability, ε-representativeness, uniform convergence, and empirical risk mini-

mization for any F , not just E.

The no free lunch theorem generalizes almost for free, despite its name:

Theorem 3.29 (Generalized no free lunch). Let F be any risk averse risk mea-

sure, that is, F ≥ E. Given any feature space X , and binary sample space {0, 1},
let the loss function ` be 0-1 loss, then for any learner Zn 7→ hZn and any positive

integer n ≤ 1
2
|X | there exists a probability distribution µ on X × {0, 1}, so that

there exists some

h∗ : X → {0, 1})

such that LossF(h∗, µ) = 0, and yet

PrZn∼µn

(
LossF(hZn , µ) ≥ 1

8

)
≥ 1

7
(3.31)

Proof. Since Loss ≤ LossF , the original no free lunch theorem immediately gives

the result.
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Finally, we define a temporary notation, used only in the next theorem:

Notation 3.30. For any law invariant risk measure F : L → R, let fF : [0, 1]→
R be the function

fF(p) = F(X)

where X is a random variable with

Pr(X = 0) = 1− p, Pr(X = 1) = p

Now, the fundamental theorem of SLT can be generalized to:

Theorem 3.31 (Generalized fundamental theorem of SLT). Given any law in-

variant risk measure F with continuous fF , any learning problem X ,Y = {0, 1},
with hypothesis class H, and loss function being 0-1 loss, the following conditions

are equivalent:

(1) H is F-uniformly convergent.

(2) F-ERMH is a F-PAC-learner for this problem.

(3) This problem is F-PAC-learnable.

(4) V Cdim(H) is finite.

Proof. (1) ⇒ (2): This holds for all F . The proof is the same as in Proposition

3.23.

(2) ⇒ (3): This holds for all F . The proof is immediate by definition of

ρ-PAC-learnability.

(3)⇒ (4): This holds for all risk averse F , that is, F ≥ E, by the generalized

no free lunch theorem.

(4) ⇒ (1): By the original fundamental theorem of SLT, H is uniformly

convergent, so it suffices to show it implies H is F -uniformly convergent.

For any µ, LossF(h, µ) = F(`(h(X), Y )), where (X, Y ) ∼ µ. Let the binary

random variable `(h(X), Y ) have Pr(`(h(X), Y ) = 1) = p, then Loss(`(h(X), Y )) =

p, and so

LossF(`(h(X), Y )) = fF(p) = fF(Loss(`(h(X), Y )))

fF is continuous on [0, 1], so it is uniformly continuous, so for any ε > 0, there

exists ε′, such that any ε′-representative training data Zn is ε-F -representative:

∀h ∈ H, |Loss(h, µZn)− Loss(h, µ)| ≤ ε′
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⇒ |LossF(h, µZn)− LossF(h, µ)| = |fF(Loss(h, µZn))− fF(Loss(h, µ))| ≤ ε

Thus, if H is uniformly convergent, it has some nH : (0, 1)× (0, 1)→ N such

that ∀ε′, δ ∈ (0, 1), n ≥ nH(ε′, δ),

P rZn∼µn(Zn is ε′-representative) ≥ 1− δ

⇒ PrZn∼µn(Zn is ε-F -representative) ≥ 1− δ

Thus H is F -uniformly convergent.

Moreover, given F and its function fF , an explicit bound on how many sam-

ples the ERM learner need in order to do PAC-learning can be given.

Lemma 3.32. For any spectral risk measure F =
∫ 1

0
CVaRα dm(α) defined by a

probability distribution m on [0, 1), its fF is continuous.

Proof. By definition of CVaRα, we have fCVaRα = fα, where

fα(p) = min

(
p

1− α
, 1

)
In particular, since all fα are concave and monotonically increasing on [0, 1],

their integral fF is also. Since fF is concave on (0, 1), it is continuous there

[Art15, Theorem 1.5].

For any p ∈ (0, 1), and any n > 1,

fF

(p
n

)
=

∫
[0,1)

min

( p
n

1− α
, 1

)
dm(α)

=

∫
[0,1−p)

p
n

1− α
dm(α) +

∫
[1−p,1− pn)

p
n

1− α
dm(α) +

∫
[1− pn ,1)

1dm(α)

≤
∫

[0,1−p)

p
n

1− α
dm(α) +

∫
[1−p,1− pn)

1dm(α) +

∫
[1− pn ,1)

1dm(α)

=
p

n

∫
[0,1−p)

1

1− α
dm(α) +m([1− p, 1))

Thus, 0 ≤ lim supp→0 fF(p) ≤ infp∈(0,1)m([1− p, 1)) = 0. So fF is continuous

at 0.

Finally, at p → 1, since f(p) is monotonically increasing, any discontinuity

there can only be a jump upwards. Since fF is also concave on [0, 1], it cannot

have it, so fF is continuous at 1.
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Corollary 3.33. For any spectral risk measure F =
∫ 1

0
CVaRα dm(α) defined

by a probability distribution m on [0, 1), it satisfies the generalized fundamental

theorem of SLT.

We give an explicit quantitative illustration:

Example 3.34. For any α ∈ (0, 1), fCVaRα has the modulus of continuity 1
1−α ,

so any ε-representative sample Zn is a ε
1−α -F -representative sample.

By combining [SB14, Theorem 6.10, 6.11], if H has finite VC-dimension d,

then for all n ∈ N,

PrZn∼µn (Zn is g(n)-representative) ≥ 1− δ

where

g(n) =
4 +

√
d(ln (2n)− ln d+ 1)

δ
√

2n

Thus,

PrZn∼µn

(
Zn is

g(n)

1− α
-F -representative

)
≥ 1− δ

Since limn g(n) = 0, for any ε, δ ∈ (0, 1), take any N such that 2g(N) < ε
1−α ,

then for any n > N ,

PrZn∼µn
(
Zn is

ε

2
-F -representative

)
≥ 1− δ

So, taking n training samples allows ERM to do F -PAC-learning:

PrZn∼µn

(
LossF(hZn , µ) ≤ min

h∈H
LossF(h, µ) + ε

)
≥ 1− δ.
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Chapter 4

Limit theorems of coherent risk

measures

In this chapter, we start by reviewing limit theorems in probability and large

deviation theory, then move on to a new proof of the central limit theorem (CLT)

for an empirical process of CVaR, which generalizes the classical CLT for expec-

tation.

In the literature, there have been generalizations of limit theorems results to

CVaR. In particular, [Che07] proves the generalized central limit theorem, and

[GW11], the generalized Berry–Esseen inequality, law of iterated logarithm, and

large and moderate deviation principles. However, the proof presented below of

the CLT of CVaRis new, as far as we are aware.

4.1 Limit theorems in probability

In calculus, each convergent real sequence (xn) has a limit x∞ associated with it.

Taking the limit is a lossy operation that loses most of the details, but preserves

something essential about the sequence (xn), namely, its eventual behavior.

In probability, given a stochastic process (Yn), one may ask if there exists

some random variable or real number (which is a degenerate random variable) as

its limit. The answer is yes, in certain senses. Making this precise gives us the

limit theorems.

The most important limit theorems are the central limit theorem (CLT), the

weak law of large number (WLLN), and the strong law of large number (SLLN).

57
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4.1.1 Central limit theorem (CLT)

There are many formulations of CLT, but we will only need the classical CLT

[Bil12, Theorem 27.1]:

Theorem 4.1 (classical CLT). Suppose that (Xn) is an independent sequence of

random variables having the same distribution with finite mean µ and variance

σ2. If Xn = 1
n
(X1 + · · ·+Xn), then

√
n (Xn − µ)

d→N (0, σ2) (4.1)

Here, N denotes the normal distribution:

Definition 4.2. For any µ ∈ R, ν > 0, N (µ, ν) is the standard normal distribu-

tion with mean µ and variance ν, with PDF

ρ(x) =
1√
2π
e−x

2/2. (4.2)

As noted in Example 2.17, the CLT can be rephrased in the language of

empirical process (Ln) of X:

√
n (E(Ln)− E(X))

d→N (0, 1) (4.3)

This immediately suggests the generalization

√
n (CVaRα(Ln)− CVaRα(X))

d→N (0, σ(α)) (4.4)

where 0 ≤ α < 1, and σ(α) is a function that possibly depends on α and X.

At α = 0, this reduces to the original CLT, and so σ(0) = 1. At α = 1,

CVaRα(Ln)− CVaRα(X) = max
i∈[n]

Xi ess sup(X) > 0

has probability zero, and so the generalized CLT cannot be true.

As will be shown in Theorem 4.11, except at points of α where F−1
X (α) is

discontinuous, this generalization (Equation 4.4) is indeed true.

4.1.2 Strong laws of large numbers (SLLN)

Theorem 4.3 (Laws of large numbers for expectations). If E(|X|) <∞, that is,

X ∈ L 1, then E(Ln) converges to E(X), in the senses of:

(1) (Weak law) convergence in probability.
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(2) (Strong law) almost sure convergence.

Both CLT and SLLN are “stronger” than WLLN, in that any random variable

X that satisfies CLT or SLLN would satisfy WLLN. However, CLT and SLLN do

not imply each other in general. As it is a corollary of SLLN, we will not mention

WLLN any longer.

Theorem 4.4 (SLLN for CVaR). For any real random variable X, and any

0 ≤ α ≤ 1, CVaRα(Ln) converges to CVaRα(X) almost surely.

For the case of α = 0, this is the usual case of the SLLN. For the case of

α = 1,CVaR1 = ess sup, and the proof is easy. The general case is Theorem 4.14,

deferred to Section 4.2.2.

Theorem 4.5 (SLLN for ess sup). For any real random variable X, ess sup(Ln)

converges to ess sup(X) almost surely.

Proof. First, the case of ess sup(X) <∞: For any n ∈ N, ess sup(Ln) = max(X1, ..., Xn),

so (ess sup(Ln))n is a non-decreasing sequence.

By definition of essential supremum, Pr(ess sup(Ln) ≤ ess sup(X)) = 1, so

the sequence almost surely converges to a limit less or equal to ess sup(X), and

it suffices to show Pr(lim supn(ess sup(Ln)− ess sup(X)) ≥ 0) = 1.

For any ε > 0,

Pr(ess sup(Ln) < ess sup(X)− ε) = Pr(X < ess sup(X)− ε)n → 0

Thus, Pr(limn(ess sup(Ln) − ess sup(X)) ≥ −ε) = 1 for all ε > 0, and so

Pr(lim supn(ess sup(Ln)− ess sup(X)) ≥ 0) = 1.

For the case of ess sup(X) = ∞, the same proof applies, after replacing

ess sup(X)− ε by M , an arbitrarily big number.

4.1.3 Law of the iterated logarithm (LIL)

Lying between SLLN and CLT is the law of the iterated logarithms (LIL). With

no loss of generality, consider a random variable X with mean 0 and variance

1, and (Xn)n being its IID process. SLLN states that 1
n

∑n
i=1Xi

a.s.→ 0, that is,

the distribution of 1
n

∑n
i=1 Xi converges to δ0 “quickly”. CLT states that the

distribution of 1√
n

∑n
i=1 Xi converges to N (0, 1).

Intermediate between them, LIL states that 1√
n ln lnn

∑n
i=1Xi converges to δ0,

but slowly, so that lim supn
1√

n ln lnn

∑n
i=1 Xi =

√
2 almost surely.
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Figure 4.1: 1000 samples of random walks, with each step having mean 0 and

variance 1. Almost all the walks eventually fall inside the outer dashed cone of

y = ±εn, demonstrating the SLLN. Most of the walks barely touch the edges

of the cone y = ±
√

2n ln lnn, demonstrating the LIL. About 68% of the walks

are inside the cone y = ±
√
n at the right edge of the graph, demonstrating one

instance of the CLT.

Theorem 4.6 (Law of the iterated logarithms). Given random variable X with

mean 0 and variance 1, and (Xn)n being its IID process, then

lim sup
n

1√
n ln lnn

n∑
i=1

Xi =
√

2 almost surely. (4.5)

By symmetry, we also have

lim inf
n

1√
n ln lnn

n∑
i=1

Xi = −
√

2 almost surely. (4.6)

Pictorially, one can consider a random walk process (Sn)n defined by Sn =∑n
i=1Xi, shown in Figure 4.1.

SLLN states that for any ε > 0, with probability one, a randomly chosen walk

would eventually be contained in the cone y = ±εx.
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CLT states that for any ε > 0, for big n, the probability that a randomly

chosen path is within the cone y = ±ε
√
x at the x = n section (that is, Sn ∈

(−ε
√
x, ε
√
x)) is Pr(N (0, 1) ∈ (−ε, ε)).

Intermediately, LIL states that with probability one, a random path would

touch the edge of the cone y = ±
√

2x ln lnx infinitely many times, but for any

ε > 0, it would only touch the edge of y = ±(1+ε)
√

2x ln lnx finitely many times.

While SLLN and CLT are extensively used in practical statistics, the LIL

in comparison has little practical consequence [Van00]. One classic paper on

applications of LIL to statistics is [Rob70].

Before plunging into large deviation theory, which we will use to derive the

CLT for certain risk measures, we take note of the surrounding territory for

context.

In the literature, one can often find mentions of large/moderate/small

deviation principles. Among these, the large deviation principles are the most

popular. Two standard references on this subject are [DZ09; Den08].

4.1.4 Deviation principles

Consider a random variable X with mean 0 and variance 1, and its IID process

(Xn)n. Let Sn = X1 + · · ·+Xn. By the CLT, we have for any constant ε > 0,

lim
n
Pr(Sn > εn

1
2 ) = 1− Φ(ε), (4.7)

where Φ is the CDF of the standard normal distribution.

If |X| has finite third moment, then by the Berry–Esseen theorem [Dur10,

Theorem 3.4.9], this convergence is uniform in the sense that

lim
n

Pr(Sn > xnn
1
2 )

1− Φ(xn)
= 1 (4.8)

for any sequence of (xn)n that satisfies xn = O(1). This, though not often called

so, is a small deviation principle.

One immediately considers generalization for xn that may grow faster than

O(1).

The large deviation theorem would give an asymptotic expansion in the case

where xn is O(n
1
2 ). For example, Cramér’s theorem states that if X is “nice”,

there exists a rate function I : R→ [0,∞) such that

∀ε > 0, P r(Sn > εn)→ e−nI(ε).
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More rigorously, the convergence is

1

n
lnPr(Sn > εn)→ −I(ε). (4.9)

Between them, a moderate deviation theorem [CFS13] states that the asymp-

totic expansion is

Pr(Sn > xnn
1
2 )

1− Φ(xn)
= 1 +O(1)

1 + x3
n√

n
. (4.10)

for xn = O(n
1
6 ). In more details, it states that(

Pr(Sn > xnn
1
2 )

1− Φ(xn)
− 1

) √
n

1 + x3
n

. (4.11)

is bounded as n→∞.

In [RS65], a moderate deviation defined by xn = O(
√

lnn) is studied. In

general, moderate deviation studies

O(1) < xn < O(
√
n),

that is,

|xn| → ∞,
xn√
n
→ 0. (4.12)

A large part of modern probability consists of various generalizations of the

deviation principles under assumptions on (Xn)n weaker than full independence
∗. The sequences of (Xn)n could also be generalized to be multidimensional, or

graphs, or some other complicated mathematical objects.

4.1.5 The Gärtner–Ellis theorem

The Gärtner–Ellis theorem states a large deviation principle for sequences of

not necessarily independent random variables. It uses a generalization of the

cumulant generating function:

Definition 4.7. For any real random variable X, its cumulant generating

function is

∀t ∈ R, K(t) = lnE(etX). (4.13)

∗Such as “weakly dependent”, “strongly mixing”, “exchangeable”, “ergodic”, and many

other highly technical weakenings.
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Consider, for example, the empirical process (Ln) of X, and the sequence

E(Ln) = 1
n

∑n
i=1Xi, then we have

E
(
entE(Ln)

)
= E

(
etX
)n

and so for any t ∈ R,

K(t) = lim
n→∞

1

n
lnE

(
entE(Ln)

)
For a general sequence of real random variables, (Yn)n, let

Kn(t) =
1

n
lnE

(
entE(Ln)

)
,

then if the following limit exists

lim
n→∞

Kn(t)

for all t in a neighborhood of 0, then the Gärtner–Ellis theorem gives the limit

behavior of a properly scaled version of the sequence (Yn)n.

There are many versions of the Gärtner–Ellis theorem with varying generali-

ties. The version that we use is [CG84, Lemma 1]:

Theorem 4.8 (Gärtner–Ellis theorem). For a general sequence of real random

variables, (Yn)n, if the following limit exists

K(t) = lim
n→∞

1

n
lnE

(
entYn

)
for t in a neighborhood (ε−, ε+) of 0, and if K is strictly convex and C2 on (ε−, ε+),

then, letting µ = K ′(0), σ2 = K ′′(0),

(1) (SLLN) Yn
a.s.→ µ.

(2) (CLT) If for all sufficiently large n, Kn is convex on [0, ε+), and limnK
′′
n(0) =

σ2, then
Yn − E(Yn)√

n

d→N (0, σ2). (4.14)

4.2 Limit theorems of CVaR

In this section, we present calculations and numerical evidence that demonstrate,

if not prove with full rigor, the CLT and SLLN of CVaR.
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4.2.1 CLT for CVaR

Consider a real X with PDF ρ and CDF Φ. For any h ∈ N, define

E(exp (ntCVaRα(Ln))) = E

(
exp

(
t

α

αn∑
i=1

X(i)

))

= E

(
exp

(
t

α

αn∑
i=1

Xi

)∣∣∣X1, ..., Xαn > Xαn+1 > Xαn+2, ...Xn

)
Here, X(i) denotes the i-th biggest term in the sequence X1, ...Xn. The cases

where two or more Xi are equal having measure 0, thus ignored.

Note that the sum should not be taken literally, as in actuality, CVaRα(Ln)

is the average of the biggest bαnc terms of X1, ..., Xn, plus {αn} times the next

biggest term. However, as n grows, this little fudge factor will be swamped out,

and therefore we ignore it.

That the expectation can be conditioned on a particular choice of ordering of

Xi is because the sequence (Xn)n is an exchangeable sequence of random

variables, that is, any finite permutation of the sequence creates a sequence with

the same distribution.

Now we continue the calculation.

=

∫
R
Pr(Xαn+1 ∈ dx|X1, ..., Xαn > Xαn+1 > Xαn+2, ...Xn)E(e

tX
α |X > x)αn

=

∫
R

FX(x)αn−1(1− FX(x))αnρ(x)dx

B(αn, αn+ 1)
E(e

tX
α |X > x)αn

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Euler beta function, and Γ is the Euler gamma

function.

Plugging in

(1− FX(x))E(e
tX
α |X > x) =

∫ ∞
x

ety/αρ(y)dy,

we obtain

=
1

B(αn, αn+ 1)

∫
R

(
FX(x)α

(∫ ∞
x

ety/αρ(y)dy

)α)n
ρ(x)

FX(x)
dx

Now, by Stirling’s approximation,

B(αn, αn+ 1) = exp(−nH(α) +O(lnn)),

where

H(α) = −α lnα− α lnα (4.15)
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is the binary entropy function.

So, by Laplace’s method [BO99, Section 6.4],

K(t) = H(α) + max
x∈R

(
α lnFX(x) + α ln

(∫ ∞
x

ety/αρ(y)dy

))
(4.16)

provided that

α lnFX(x) + α ln

(∫ ∞
x

ety/αρ(y)dy

)
(4.17)

has a unique global maximum at some x0, is C2 in a neighborhood of x0, and
ρ(x0)
FX(x0)

> 0.

Taking derivative, such a maximum is a root of

FX(x) =
α

α

∫ ∞
0

ety/αρ(x+ y)dy. (4.18)

At t = 0 has solution x = F−1
X (α), and we obtain

K(0) = H(α) + α lnFX(F−1
X (α)) + α ln

∫ ∞
F−1
X (α)

ρ(y)dy = 0

as it should.

Near t = 0, x can be expanded as a power series x = F−1
X (α)+x1t+x2t

2+o(t2),

which can then be plugged into the equation of K(t) = µ(α)t + 1
2
σ(α)2 + o(t2),

from which we obtain

√
n(CVaRα(Ln)− µ(α))

d→N (0, σ(α)2) (4.19)

Example 4.9. X is uniform on [0, 1], then

K(t) = H(α) + max
x∈(0,1)

(
α lnx+ α ln

α

t

(
et/α − etx/α

))
(4.20)

The maximizer x is the root of

x =
α

t

(
et(1−x)/α − 1

)
which has asymptotic expansion

x = α + x1t+ x2t
2 + o(t2).

Plugging it in and solving up to t2 order, we obtain

x = α +
1

2
ααt+

1

6
αα(1− 3α)t2
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and so

K(t) =
1

2
(1 + α)t+

1

24
(1− α)(1 + 3α)t2 + o(t2)

So we obtain the CLT for X:

µ(α) =
1

2
(α + 1) = CVaRα(X), σ(α)2 =

1

12
(1− α)(1 + 3α) (4.21)

This is illustrated in Figures 4.2 and 4.3.

Example 4.10. A discrete X with a finite discrete distribution
∑N

i=1 piδxi can

be approximated by very concentrated uniform distributions, that is,

ρ(x) =

pi
ε

x ∈ [xi, xi + ε]

0 else
,

where ε is a positive number smaller than min1≤i≤N−1(xi+1 − xi).
Let Pi = p1 + ... + pi for all i ∈ [N ], then if α ∈ (Pi−1, Pi) for some i ∈ [N ],

then F−1
X (α) = xi + ε

pi
(α − Pi−1). Then, the maximum in Equation 4.17 is the

root of

Pi−1 +
pi
ε

(x− xi) =
α

εt

(
pi
(
e(ε−(x−xi))t/α − 1

)
+

N∑
j=i+1

(
pje

(xj−x)t/α
(
eεt/α − 1

)))

which has the power expansion

x = xi +
ε

pi
(α− Pi−1) + At+Bt2 + o(t2)

Plugging it in to solve for A,B, then expanding K, and taking the ε → 0

limit, we obtain

K(t) = µ(α)t+
1

2
σ(α)2t2

where

µ(α) =
1

α
(xi(Pi − α) +

N∑
k>i

pkxk) = CVaRα(X), (4.22)

σ(α)2 =
1

α2

(Pi(1− Pi)x2
i − 2Pixi

N∑
k>i

pkxk +
N∑
k>i

pkx
2
k −

(
N∑
k>i

pkxk

)2

(4.23)

After routine algebra, this is simplified to V
(

1
α

(X − F−1
X (α))+

)
, where for any

random variable Y , Y+ = max(Y, 0) is the positive part of Y .
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Figure 4.2: A demonstration of the CLT for CVaR. Here, X is the uniform

distribution on [0, 1], and the PDF of CVaRα(Ln) is plotted as a function of

n and α. As n increases, the distributions converge to normal distributions.

Increasing α both shifts the distribution to the right, and distort it away from

normality. Each histogram is the result of 104 trials.
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(a) ρ(x) = 2e−2x with x > 0. (b) X ∼ N (0, 1).

(c) ρ(x) = 3
4(1− x2) with x ∈ [−1, 1] (d) X is uniform on [0, 1].

(e) X is discrete uniform on {0, 1, 2}. (f) ρ(x) = −xe−x2/2 with x < 0.

Figure 4.3: Numerical confirmation of Theorem 4.11 (CLT for CVaR). σ(α)

plots for six different distributions of X are calculated, and five of them fits

the numerical simulation. The last plot is calculated only theoretically, without

numerical verification. The curves are the exact theoretical prediction of the

standard deviation of
√
nCVaRα(Ln) as n → ∞, given by Equation 4.25. Each

point in the scatterplots is obtained by sampling
√
nCVaRα(Ln) for 1000 times,

where n = 1000.
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When α is equal to some Pi, that is, when F−1
X is discontinuous at α, the

result is not determined by this method, as K(t) does not have continuous second-

derivative in a neighborhood of t = 0.

For arbitrary X with finite variance, its distribution can be approximated as

the limit of discrete distributions, and so we have obtained

Theorem 4.11 (CLT for CVaR). For any real random variable X with finite

variance, and any α ∈ (0, 1), if F−1
X is continuous at α, then the empirical process

of the CVaRα of X satisfies

√
n(CVaRα(Ln)− CVaRα(X))

d→N (0, σ(α)) (4.24)

where

σ(α)2 =
1

α
E[(X − F−1

X (α))2|X > F−1
X (α)]− E[(X − F−1

X (α))|X > F−1
X (α)]2

= V
(

1

α
(X − F−1

X (α))+

)
(4.25)

A more abstract and general version of the CLT for empirical CVaR, that

weakens assumption of independence of the process (Xn) to merely α-mixing, is

proved in [Che07, Theorem 1].

In [Bra+08, Theorem 3.1], an alternative formula for σ(α) is given:

σ(α)2 =
1

(1− α)2

∫ ∞
F−1
X (α)

∫ ∞
F−1
X (α)

(FX(min(x, y))− FX(x)FX(y)) dxdy (4.26)

As for α where F−1
X is discontinuous, we conjecture that the CLT simply fails,

and instead, the limit distribution is a “mixed” normal distribution.

Definition 4.12. Given σ1, σ2 > 0, the mixed normal distributionNmixed(µ, σ1, σ2)

is the distribution with PDF

ρ(x) =

ρ1(x) 2σ1
σ1+σ2

x ≤ µ

ρ2(x) 2σ2
σ1+σ2

x ≥ µ
(4.27)

where ρi is the PDF of N (µ, σi), with i = 1, 2.

Conjecture 4.13. Given X with finite variance, for any α ∈ (0, 1) such that

F−1
X is discontinuous at α,

√
n(CVaRα(Ln)− CVaRα(X))

d→Nmixed(µ, σ1, σ2) (4.28)
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where

µ = CVaRα(X), (4.29)

and

σ1 = lim
z↗α

σ(z), σ2 = lim
z↘α

σ(z). (4.30)

are the two one-sided limits of σ(α).

This conjecture cannot be proved by Theorem 4.8, since when α is at those

critical values, K(t) has no second-derivative at 0.

We tested this conjecture by numerically calculating the distribution of

CVaRα(Ln), for a big n = 105, X being uniformly distributed on {0, 1, 2}, and

for α ≈ 1/3, around a discontinuous point of F−1
X .

As shown in Figure 4.4, as α is about the discontinuous point, the right side

of the bell curve suddenly shrinks in width from σl down to σu. Then, just after

α crosses the discontinuity, left side shrinks too.

The conjecture predicts that it should have a mixed normal distribution de-

fined by

µ = 1.5, σl =
√

1.5/n = 0.003873, σu =
√

0.5/n = 0.002236.

As shown in Figure 4.5, this is close to the numerical best fit

µ = 1.5 + 2.1× 10−4, σl = 0.003729, σu = 0.002217.

4.2.2 SLLN for CVaR

Now we present the SLLN for the empirical process of CVaRassuming X has

finite variance.

In [AT02, Proposition 4.1], this is proved assuming only that

E((−X)+) <∞,

but the proof is more involved.

Theorem 4.14 (SLLN for CVaR). For any real random variable X with finite

variance, and any α ∈ [0, 1], then the empirical process of the CVaRα of X

satisfies

CVaRα(Ln)
a.s.→ CVaRα(X). (4.31)
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Figure 4.4: Distribution of CVaRα(Ln), with n = 105, X being the uniform

distribution on {0, 1, 2}, as α crosses the 1/3 boundary. Each histogram results

from 105 trials. Each black curve is the best fit normal distribution N (µ, σ),

with parameters µ, σ written above. Each vertical line denotes the estimated

maximum of the distribution of CVaRα(Ln). Notice how nearing α = 1/3, the fit

to normal distribution degrades , and the estimated maximum shifts ahead.
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Figure 4.5: Distribution of CVaR1/3(Ln), with n = 105, X being the uniform

distribution on {0, 1, 2}. The histogram results from 105 trials. The black curve is

the best fit mixed normal distribution N (µ, σl, σu), with µ = 1.5+2.1×10−4, σl =

0.003729, σu = 0.002217, and the vertical line denotes the location of µ.

Proof. There are four cases to consider.

1. If α = 0, it is simply the SLLN for expectations.

2. If α = 1, it is proved in Theorem 4.5.

3. If α ∈ (0, 1), and F−1
X is continuous at α, then the power series K(t) =

µ(α)t + 1
2
σ(α)2t2 + o(t2) in a neighborhood of 0 means that K is stricly convex

and C2 in that neighborhood. Now apply part (a) of Theorem 4.8.

4. If α0 ∈ (0, 1), and F−1
X is not continuous at α0, then we prove by “squeezing

with nearby points of continuity”.

Since F−1
X is monotone, by Lebesgue’s differentiation theorem [RFR10, Section

6.2], it is almost everywhere differentiable. That is, let

D = {x ∈ (0, 1) : F−1
X is differentiable at x}

then D has Lebesgue measure 1.

For any ε > 0, since CVaRα(X) is a continuous function of α, there exists

δ > 0 such that

∀α ∈ (α0 − ε, α0 + ε), |CVaRα(X)− CVaRα0(X)| < δ

Now take α1, α2 ∈ D ∩ (α0 − ε, α0 + ε) such that α1 < α0 < α2. Note that

α1, α2 exists because D has measure 1.

Then, by the SLLN for CVaRα1 ,CVaRα2 , and the monotonicity of CVaRα as

a function of α, we have

lim sup
n

CVaRα0(Ln) ≤ lim sup
n

CVaRα2(Ln)
a.s.→CVaRα2(X) ≤ CVaRα0(X) + ε



4.2. LIMIT THEOREMS OF CVAR 73

and similarly,

lim inf
n

CVaRα0(Ln) ≥ CVaRα0(X)− ε almost surely

Since for all ε > 0, these two inequalities hold almost surely, we have, almost

surely,

lim
n

CVaRα0(Ln) = CVaRα0(X).

In fact, with a little manipulation, we immediately strengthen it to

Theorem 4.15 (Uniform SLLN for CVaR). For any real random variable X

with finite variance, almost surely, for any α ∈ [0, 1], the empirical process of the

CVaRα of X satisfies

CVaRα(Ln)→ CVaRα(X). (4.32)

that is,

Pr (∀α ∈ [0, 1], CVaRα(Ln)→ CVaRα(X)) = 1 (4.33)

Proof. Since for any particular α ∈ [0, 1],

CVaRα(Ln)
a.s.→CVaRα(X)

so with probability one, it holds simultaneously for the countably many rational

α ∈ [0, 1]. Then by a “squeezing” argument like in the previous proof, it holds

simultaneously for all α ∈ [0, 1]:

For any α ∈ (0, 1), and any ε > 0, by continuity of CVaRα with respect to α,

there exists rational α1, α2 ∈ (0, 1), such that α1 < α < α2, and

CVaRα(X)− ε < CVaRα1(X) ≤ CVaRα(X) ≤ CVaRα2(X) < CVaRα(X) + ε

noting that CVaRα(X) must be finite, since X has finite expectation, and α < 1.

Now, if CVaRαi(Ln)→ CVaRαi(X) for i = 1, 2, then

CVaRα(X)− ε ≤ lim inf
n

CVaRα(Ln)

CVaRα(X) + ε ≥ lim sup
n

CVaRα(Ln)

Since this holds for all ε > 0, we have

CVaRα(Ln)→ CVaRα(X).
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4.2.3 CLT of CVaRα in the α→ 1 limit

Now we study the qualitative behavior of

σ(α)2 = V
(

1

α
(X − F−1

X (α))+

)
at the α→ 1 limit.

Let

f(α) = ασ(α) =
√
V
(
(X − F−1

X (α))+
)

(4.34)

then f is a monotonically decreasing function of α ∈ (0, 1).

At the α→ 0 limit,

f(α)→ σ(0)2 = V(X).

The behavior of f at the α → 1 limit depends on the right tail of the dis-

tribution of X. Qualitatively speaking, the thinner its right tail, the faster it

approaches zero. Figure 4.6 is a schematic plot of the behavior of f , for X with

tails of various thicknesses.

The following examples are summarized by Table 4.1.

Table 4.1: The right tail of ασ(α) in the α→ 1 limit. The right tail of ρ is either

the x→∞ or the x→ 0 limit. As the right tail of ρ becomes thinner, the right

tail of ασ(α) converges to 0 quicker.

right tail of ρ right tail of ασ(α)
1

x3+ε
α
ε
4

1
xn
, (n > 3) α

n−3
2n−2

1
x1001

α0.499

e−x α0.5

e−x
2/2

√
α

erfc−1(2α)

(−x)999 α0.5005

(−x)n, (n > −1) α
n+3
2n+2

(−x)1 α

(−x)0 α1.5

(−x)−1+ε α
1
ε

Now we list some examples, some of which are shown in Figure 4.3
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Example 4.16. Suppose X is uniform on {0, 1, 2}, then

σ(α)2 =


2

3α2 if α ∈ [0, 1/3)

2
9α2 if α ∈ (1/3, 2/3)

0 if α ∈ (2/3, 1)

(4.35)

as shown in Figure 4.3e.

Example 4.17. Suppose X has a right tail of the form

ρ(x) ≈ A

xn

where n > 3 to ensure that X has finite variance, and A > 0 is an unspecified

constant, then at the α→ 1 limit, approximately

σ(α)2 ∝ 1

α2 (− lnα)n−3 (4.36)

giving f(α) ∝ (− lnα)−(n−3)/2 at α→ 1 limit.

Example 4.18. The exponential distribution with PDF

ρ(x) = λe−λx, x > 0, λ > 0

has

σ(α)2 =
1

λ2

1 + α

1− α
(4.37)

giving f(α) ∝ α1/2 at the α→ 1 limit. See Figure 4.3a.

Example 4.19. The Gaussian distribution with PDF

ρ(x) =
1√
2π
e−x

2/2

has

σ(α)2 =
1

α2

(
1 + αφ(a)2 +

ρ(φ(α))

α
((1− 2α)φ(α)− ρ(φ(α)))

)
(4.38)

where

φ(α) = F−1
X (α) =

√
2 erf−1(2α− 1)

is its quantile function, where erf is the error function defined by

erf(x) = 1− 2√
π

∫ ∞
x

e−t
2

dt (4.39)
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At the α→ 1 limit, this gives

f(α) ≈
√
α

erfc−1(2α)
. (4.40)

Here, erfc is the complementary error function, defined by

erfc(x) = 1− erf(x) (4.41)

See Figure 4.3b.

Example 4.20. If X is bounded above, shift it so that ess sup(X) = 0. Then

suppose it has a PDF ρ,

ρ(x) ≈ A(−x)n, x ∈ (−ε, 0)

where n > −1, and A being an unspecified positive constant, then at the α→ 1

limit, approximately

f(α) ∝ α
n+3
2n+2 (4.42)

Notably, when n = 1, f(α) ∝ α, so σ(α) ∝ 1 in fact converges to a positive

constant. This is shown in Figure 4.3c.

When n > 1, σ(α) diverges to infinity, and when −1 < n < 1, it converges to

0. For example, when X is uniform, it has n = 1, and indeed by Equation 4.21,

limα→1 σ(α) = 0.

Example 4.21. A particularly flat σ(α) that we found is shown in Figure 4.3f,

defined by a real random variable with PDF ρ(x) = −xex2/2, with x < 0. It gives

f(α) = 2(α + α2F (
√

lnα)2) (4.43)

where F is the Dawson F function defined by

F (x) = e−x
2

∫ x

0

et
2

dt. (4.44)

4.3 Limit theorems for other risk measures

It is natural to ask whether there are limit theorems for more general risk measures

than CVaR. However, a literature search turned up nothing. As such, we believe

the following results are new.
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Figure 4.6: Schematic drawing of the tail behavior of ασ(α) for various distribu-

tions of X. In general, the thinner the tail, the faster it converges to 0.

Each legend lists the right tail of the density the X corresponding to each curve.

From top to bottom, the right tails of X and of ασ(α) grow thinner together.



78 CHAPTER 4. LIMIT THEOREMS OF COHERENT RISK MEASURES

4.3.1 SLLN for spectral risk measures

When X is bounded above and below, the uniform SLLN for CVaRcan be ex-

tended to all spectral risk measures:

Theorem 4.22 (uniform SLLN for spectral risk measures). Let X ∈ L∞, that

is, it is a random variable with bounded range. Then almost surely, for any

probability measure m on [0, 1], the spectral risk measure F =
∫ 1

0
CVaRα dm(α)

satisfies a SLLN:

F(Ln)→ F(X) (4.45)

Proof. Let M > |X| be an upper bound of X, then by monotonicity of CVaR,

−M < CVaRα(Ln) < M, |CVaRα(Ln)| ≤M

By theorem 4.15, almost surely, CVaRα(Ln) converges pointwise (with respect to

α) to CVaRα(X). Then since
∫
Mdm(α) = M is finite, by Lebesgue’s dominated

convergence theorem,

lim
n
F(Ln) = lim

n

∫
CVaRα(Ln)dm(α) =

∫
CVaRα(X)dm(α) = F(X)

4.3.2 CLT for spectral risk measures?

In the proof of SLLN for spectral risk measures, the crucial step is using a SLLN

of CVaRα that holds uniformly over all α ∈ [0, 1]. Analogously, we suspect that

there is a CLT for spectral risk measures that depends on a uniform CLT, similar

to results collected in [Dud99].

In particular, we suspect that a proof can be found through the generalized

Berry–Esseen Theorem for CVaR, as [GW11, Theorem 1.1]:

Theorem 4.23 (Berry–Esseen theorem for CVaR). Given real random variable

X with finite third moment, α ∈ (0, 1), such that σ(α) > 0, and X has a strictly

positive, continuous PDF in a neighborhood of F−1(α), then there exists some

Cα > 0 such that

‖Gn − Φ‖∞ ≤
Cα√
n

(4.46)

for all n ∈ N, where Gn is the CDF of the random variable

√
n

σ(α)
(CVaRα(Ln)− CVaRα(X))
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However, using the Berry–Esseen theorem, we were unable to prove the sus-

pected generalization to the CLT of CVaR, so we leave it as a conjecture:

Conjecture 4.24 (CLT for spectral risk measures). For any probability measure

m on [0, 1], define a spectral risk measure F =
∫ 1

0
CVaRα dm(α), then for any

real random variable X with finite variance,

√
n(F(Ln)−F(X))

d→N (0, σ) (4.47)

for some σ ≥ 0, provided that there does not exist some α0 ∈ [0, 1], such that

m(α0) > 0, and σ(α) is discontinuous at α0, where σ(α) is the standard deviation

of the limit distribution in Equation 4.24:

√
n(CVaRα(Ln)− CVaRα(X))

d→N (0, σ(α))

Otherwise, there exists σ1 > σ2 ≥ 0 such that

√
n(F(Ln)−F(X))

d→Nmixed(0, σ1, σ2) (4.48)

4.3.3 CLT for entropic value at risk?

Other than CVaR, another example of CRM is the entropic value at risk (EVaR),

proposed in [Ahm12].

Definition 4.25. For any α ∈ [0, 1], and real random variable X, its α-level

EVaRis

EVaRα(X) = inf
t>0

1

t
lnE

(
1

1− α
etX
)

(4.49)

The entropic value at risk (EVaR) is similar to CVaR, and as such we have rea-

sons to suspect it to have a similar CLT. We attempted to calculate the cumulant

generating function for the empirical process of EVaR, but without success.

While having no definitive proof, numerical simulation strongly suggests that

there exists a similar CLT for EVaR:

Conjecture 4.26 (CLT for EVaR). Given any X with finite variance, and any

α ∈ [0, 1), its empirical process Ln satisfies

√
n(EVaRα(Ln)− EVaRα(X))

d→N (0, σ(α)) (4.50)

where σ(α) is a continuous function satisfying σ(0)2 = V(X).
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Figure 4.7 plots the mean and standard deviation (normalized by
√
n) of

the EVaRα(Ln), while Figure 4.8 shows that as n → ∞, the distribution of

EVaRα(Ln) becomes closer to normal distribution.

As shown in Figure 4.7, numerical calculation does not reveal any discontinuity

of σ(α), akin to that of CVaR, suggesting that for EVaR, the CLT holds for all

α ∈ [0, 1).
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Figure 4.7: Mean and standard deviation (normalized by
√
n) of EVaRα(Ln)

plotted as functions of α, with n = 1000, and X being the uniform distribution

on {0, 1, 2}. Each point is calculated from 1000 trials. The two vertical lines

denote α = 1/3, 2/3 respectively. As apparent from the graph, σ is a continuous

function over [0, 1], and equals zero for α > 2/3. The blip at the right end

of σ(α) is due to numerical instability of the root-finding algorithm, which is

required in the calculation of EVaR, as it involves searching for the infimum of a

transcendental function, an infimum with no closed form. (see Equation 4.49).
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Figure 4.8: A demonstration of the CLT for EVaR. Here, X is the uniform

distribution on {0, 1, 2}, and the PDF of EVaRα(Ln) plotted as a function of n

and α. As n increases, the distributions converge to normal distributions. Note

that when α = 0.8, the distribution becomes close to degenerate, as expected if

σ(α) = 0 when α > 2/3. Each histogram is the result of 5000 trials. The x-axis

is shifted and scaled in each plot to make the bell-shape apparent.



Chapter 5

Conclusion

In this chapter, we enumerate our main results, conjectures, sketch out applica-

tions to machine learning, and further research directions.

5.1 Summary of results and conjectures

Unless otherwise noted, all generalizations that follow are from expectation to

coherent risk measures.

In Chapter 2, we showed:

1. The geometric-analytic correspondence of risk measures with their envelope

representations (Proposition 2.36).

2. The formula (without proof) for envelope representation of CVaR (Equation

2.23).

3. Kusuoka representation theorem on finite uniform sample spaces (Section

2.4.1).

4. Counterexamples to Kusuoka representation theorem on finite nonuniform

sample spaces (Section 2.4.2).

In Chapter 3, we showed:

1. Generalizations of (Section 3.1).

2. Generalizations of concentration inequalities (Section 3.2).

3. Generalizations, from expectation to spectral risk measures, of basic con-

cepts (Section 3.3.3) and the fundamental theorem (Theorem 3.31) in sta-

tistical learning theory.

83
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We conjectured the CVaR law of total expectations (Conjecture 3.15).

In Chapter 4, we showed:

1. The uniform strong law of large numbers (SLLN) for spectral risk measures

(Theorem 4.22), whic subsumes the SLLN for spectral risk measures and

the SLLN for CVaR (Theorem 4.15).

2. The central limit theorem (CLT) for CVaR (Theorem 4.11).

3. Examples of the CLT for CVaR of exemplar random variables (Section

4.2.3).

We conjectured:

1. A “mixed” CLT for CVaR (Conjecture 4.13).

2. A CLT for spectral risk measures (Conjecture 4.24).

3. A CLT for entropic value at risk (Conjecture 4.26).

5.2 Machine learning applications

The stated goal of the thesis is to investigate consequences of generalizing prob-

ability theory by replacing expectation with coherent risk measures, especially

CVaR, but such general investigations are not the original motivation of the au-

thors. We were drawn to this topic from considering the use of probability in

machine learning.

As in the very first page of the thesis, many machine learning problems can be

cast into the form of risk minimization. Risk is often defined as the expectation

of loss. By replacing expectation with CVaR or other coherent risk measures, we

can obtain a risk-management tuning knob on machine learning algorithms.

In [TGM15], a stochastic gradient descent algorithm for CVaR0.05 is used to

train a Tetris-playing program that, instead of minimizing the expectation of

loss (the negative of score), minimizes the CVaR0.05 of loss. It was found that,

compared to a loss-minimizing agent, this agent was less likely to attempt high-

risk high-reward Tetris maneuvers.

In [Cho+15], the authors described algorithms for solving Markov Decision

Problems, optimized to minimize the CVaR risk measure, instead of the expec-

tation. They derived theoretical error bounds to their algorithms, and tested

the algorithm in a car navigating through a field with obstacles. As expected,
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a CVaR-optimizing agent drove more cautiously than the original expectation-

optimizing agent.

In [CG14], the authors proposed the actor-critic algorithm for reinforcement

learning, so that it minimizes the CVaR risk measure, instead of the expectation.

They proved its convergence properties, and applied it to an investment problem.

Its behavior was found to be more risk-averse than the original expectation-

optimizing algorithm.

In [MP09], the empirical risk minimization (ERM) learning algorithm is gen-

eralized by adding to the expectation of loss with a variance term, essentially gen-

eralizing ERM by replacing expectation with a non-convex risk measure. [ND17]

continues the work by proposing a similarly non-convex risk measure that is more

computationally efficient, has faster rates of convergence than empirical risk min-

imization. The authors also demonstrated its performance on two classification

problems.

In [Maj+17], CRM is applied to the problem of inverse reinforcement learn-

ing, wherein a learning agent observed humans playing a driving game, and in-

ferred what preferences humans have from their behavior. It was found that

each human’s behavior was well-modeled by minimization of their own CRM,

which differs between humans. Some humans have CRM that are very sensi-

tive to variations, which corresponds to their highly risk-averse driving behavior.

Other humans have CRM close to expectation, which corresponds to their highly

risk-neutral driving behavior.

In [WM19b], the problem of fair machine learning is discussed. The authors

proposed to define fairness risk measures, which are special cases of CRM, and

demonstrated a tradeoff between fairness and accuracy, that is, a supervised-

learning algorithm minimizing fairness risk, instead of loss expectation, gradually

became less accurate as the fairness risk increasingly weights fairness over loss

minimization. See also Section 5.3 of the same paper for more technical applica-

tions of CRM in machine learning.

5.3 Further research directions

We propose that future research in general risk measures can include:

1. The resolution of conjectures proposed in the paper.

2. Generalization of more advanced probabilistic and statistical inequalities,

such as McDiarmid’s inequality, to general risk measures.
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3. Demonstration of benefit of using general risk measures in a practical, large-

scale machine-learning application.

4. Collaboration between experts on the many aspects of risk, such as financial

mathematicians, engineers with expertise in reliability engineering, legal

theorists who deal with risks in law (such as tort law), machine learning

practitioners, and psychologists who study human perceptions of risk.
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Zitikis. “Estimating Conditional Tail Expectation with Actuarial Ap-

plications in View”. In: Journal of Statistical Planning and Inference.

Special Issue in Honor of Junjiro Ogawa (1915 - 2000): Design of

Experiments, Multivariate Analysis and Statistical Inference 138.11

(Nov. 1, 2008), pp. 3590–3604. doi: 10/cbwtgb.

[Bri19] R. A. Briggs. “Normative Theories of Rational Choice: Expected Util-

ity”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward

N. Zalta. Fall 2019. Metaphysics Research Lab, Stanford University,

2019.

[BS08] Nick Bostrom and Anders Sandberg. Global Catastrophic Risks Sur-

vey. Technical Report #2008-1. Future of Humanity Institute, Oxford

University, 2008, pp. 17–20.

[CFS13] Louis H. Y. Chen, Xiao Fang, and Qi-Man Shao. “From Stein Iden-

tities to Moderate Deviations”. In: The Annals of Probability 41.1

(Jan. 2013), pp. 262–293. doi: 10/f4nxrg.

[CG14] Yinlam Chow and Mohammad Ghavamzadeh. “Algorithms for CVaR

Optimization in MDPs”. In: Advances in Neural Information Process-

ing Systems. 2014, pp. 3509–3517.

[CG84] J. Theodore Cox and David Griffeath. “Large Deviations for Poisson

Systems of Independent Random Walks”. In: Zeitschrift für Wahrschein-

lichkeitstheorie und Verwandte Gebiete 66.4 (Sept. 1984), pp. 543–

558. doi: 10/bv6b2w.

[Che07] Song Xi Chen. “Nonparametric Estimation of Expected Shortfall”.

In: Journal of financial econometrics 6.1 (2007), pp. 87–107. doi:

10/frxvzq.

[Che14] James Ming Chen. “Measuring Market Risk under the Basel Accords:

VaR, Stressed VaR, and Expected Shortfall”. In: Stressed VaR, and

Expected Shortfall (March 19, 2014) 8 (2014), pp. 184–201.

https://doi.org/10/cbwtgb
https://doi.org/10/f4nxrg
https://doi.org/10/bv6b2w
https://doi.org/10/frxvzq


BIBLIOGRAPHY 89

[CHK13] Zengjing Chen, Kun He, and Reg Kulperger. “Risk Measures and

Nonlinear Expectations”. In: Journal of Mathematical Finance 03.03

(2013), pp. 383–391. doi: 10.4236/jmf.2013.33039.

[Cho+15] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. “Risk-

Sensitive and Robust Decision-Making: A Cvar Optimization Ap-

proach”. In: Advances in Neural Information Processing Systems.

2015, pp. 1522–1530.

[Chu01] Kai Lai Chung. A Course in Probability Theory. 3rd ed. San Diego:

Academic Press, 2001.

[Dan+01] Jon Danielsson, Paul Embrechts, Charles Goodhart, Con Keating,

Felix Muennich, Olivier Renault, and Hyun Song Shin. “An Aca-

demic Response to Basel II”. In: Special Paper-LSE Financial Mar-

kets Group (2001).

[Den08] Frank Den Hollander. Large Deviations. American Mathematical So-

ciety, 2008.

[Dia13] Jared M. Diamond. The World until Yesterday: What Can We Learn

from Traditional Societies? New York: Penguin Books, 2013.

[Dud99] R. M. Dudley. Uniform Central Limit Theorems. Cambridge Studies

in Advanced Mathematics 63. New York: Cambridge University Press,

1999.

[Dur10] Richard Durrett. Probability: Theory and Examples. 4th ed. Cam-

bridge Series in Statistical and Probabilistic Mathematics. Cambridge,

New York: Cambridge University Press, 2010.

[DZ09] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Ap-

plications. 2nd ed. 1998. 2nd printing 2009 edition. Berlin Heidelberg:

Springer, Nov. 17, 2009.

[Fis89] Peter C. Fishburn. “Retrospective on the Utility Theory of von Neu-

mann and Morgenstern”. In: Journal of Risk and Uncertainty 2.2

(1989), pp. 127–157.

[GB09] Gerd Gigerenzer and Henry Brighton. “Homo Heuristicus: Why Bi-

ased Minds Make Better Inferences”. In: Topics in cognitive science

1.1 (2009), pp. 107–143. doi: 10/ch6cnf.

https://doi.org/10.4236/jmf.2013.33039
https://doi.org/10/ch6cnf


90 BIBLIOGRAPHY

[Gia06] Emanuela Rosazza Gianin. “Risk Measures via G-Expectations”. In:

Insurance: Mathematics and Economics 39.1 (2006), pp. 19–34. doi:

10/cvgbq3.

[Gig07] Gerd Gigerenzer. Gut Feelings: The Intelligence of the Unconscious.

Penguin Books, 2007.

[GW11] Fuqing Gao and Shaochen Wang. “Asymptotic Behavior of the Em-

pirical Conditional Value-at-Risk”. In: Insurance: Mathematics and

Economics 49.3 (2011), pp. 345–352. doi: 10/d7x7sd.

[HL01] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals
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Deviations”. In: Sankhyā: The Indian Journal of Statistics, Series A

(1965), pp. 325–346.

[RU02] R. Tyrrell Rockafellar and Stanislav Uryasev. “Conditional Value-at-

Risk for General Loss Distributions”. In: Journal of banking & finance

26.7 (2002), pp. 1443–1471. doi: 10/c8fxjb.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine

Learning: From Theory to Algorithms. Cambridge university press,

2014.

[Sun07] Cass R. Sunstein. “The Catastrophic Harm Precautionary Principle”.

In: Issues in Legal Scholarship 6.3 (2007). doi: 10/dmnrqh.

[Tal12] Nassim Nicholas Taleb. Antifragile: Things That Gain from Disorder.

Random House Incorporated, 2012.

[Tao10] Terence Tao. “254A - Random Matrices, Notes 0: A Review of Prob-

ability Theory”. Lecture notes. UCLA, Jan. 2, 2010.

[TGM15] Aviv Tamar, Yonatan Glassner, and Shie Mannor. “Optimizing the

CVaR via Sampling”. In: Twenty-Ninth AAAI Conference on Artifi-

cial Intelligence. 2015.

[TK74] Amos Tversky and Daniel Kahneman. “Judgment under Uncertainty:

Heuristics and Biases”. In: Science 185.4157 (1974), pp. 1124–1131.

doi: 10/gwh.

[Val09] Leslie G. Valiant. “Evolvability”. In: Journal of the ACM (JACM)

56.1 (2009), p. 3. doi: 10/bqtzrn.

[Val84] Leslie G. Valiant. “A Theory of the Learnable”. In: Proceedings of the

Sixteenth Annual ACM Symposium on Theory of Computing. ACM,

1984, pp. 436–445.

[Van00] Aad W. Van der Vaart. Asymptotic Statistics. Cambridge university

press, 2000.

https://doi.org/10/dg9726
https://doi.org/10/c8fxjb
https://doi.org/10/dmnrqh
https://doi.org/10/gwh
https://doi.org/10/bqtzrn


92 BIBLIOGRAPHY

[Vap00] Vladimir Naumovich Vapnik. The Nature of Statistical Learning The-

ory. 2nd ed. New York: Springer, 2000.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence

of Relative Frequencies of Events to Their Probabilities”. In: Theory

of Probability & Its Applications 16.2 (1971), pp. 264–280. doi: 10/

bkrnds.

[Wei09] Martin L. Weitzman. “On Modeling and Interpreting the Economics

of Catastrophic Climate Change”. In: The Review of Economics and

Statistics 91.1 (2009), pp. 1–19. doi: 10/d5jkrf.

[WM19a] Robert C. Williamson and Aditya Krishna Menon. “Fairness Risk

Measures”. Working Draft. ANU, Feb. 2019.

[WM19b] Robert C. Williamson and Aditya Krishna Menon. “Fairness Risk

Measures”. In: arXiv preprint arXiv:1901.08665 (2019).

[ZU16] Michael Zabarankin and Stan Uryasev. Statistical Decision Problems.

Springer, 2016.

https://doi.org/10/bkrnds
https://doi.org/10/bkrnds
https://doi.org/10/d5jkrf

	Acknowledgements
	Abstract
	Notation, convention, and terminology
	Introduction
	How to read the thesis
	Start with a problem
	What is the right thing to do?
	Is expectation the right thing to calculate?
	The deadly long tail
	Further reading

	Traditions of risk measurement
	Financial mathematics
	Other traditions


	The geometry of coherent risk measures
	Basic probability definitions and notations
	Probability space
	Probability distributions
	Hilbert space of real random variables
	Functionals on random variables

	Coherent risk measures (CRM)
	Importance of coherence
	Conditional VaR (CVaR)
	The significance of CVaR

	The envelope representation of risk measures
	The symmetry group on L2
	Geometry of risk envelopes
	Envelope representation of CVaR

	Finite dimensional Kusuoka representation
	The case of uniform probability on S
	The case of nonuniform probability on S


	Inequalities of coherent risk measures
	Elementary inequalities
	Concentration inequalities
	A conjecture

	Statistical learning theory (SLT)
	Overview of SLT
	The fundamental theorem of SLT
	Generalization to CVaR


	Limit theorems of coherent risk measures
	Limit theorems in probability
	Central limit theorem (CLT)
	Strong laws of large numbers (SLLN)
	Law of the iterated logarithm (LIL)
	Deviation principles
	The Gärtner–Ellis theorem

	Limit theorems of CVaR
	CLT for CVaR
	SLLN for CVaR
	CLT of CVaR in the 1 limit

	Limit theorems for other risk measures
	SLLN for spectral risk measures
	CLT for spectral risk measures?
	CLT for entropic value at risk?


	Conclusion
	Summary of results and conjectures
	Machine learning applications
	Further research directions

	Bibliography

